Creative computing I: image, sound and motion

Volume 1
M. Casey with T. Taylor, A. Smaill and C. Brownrigg

CO1112

2014

Undergraduate study in Computing and related programmes

This is an extract from a subject guide for an undergraduate course offered as part of the University of London International Programmes in Computing. Materials for these programmes are developed by academics at Goldsmiths. For more information, see: www.londoninternational.ac.uk
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 History of Mathematics and Computing in Creativity</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Earliest Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Ancient Greece</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Arab Mathematics and Computation</td>
<td>3</td>
</tr>
<tr>
<td>1.5 The Renaissance: Geometry and Perspective</td>
<td>4</td>
</tr>
<tr>
<td>1.6 Inventing Computational Thinking</td>
<td>5</td>
</tr>
<tr>
<td>1.7 Mathematics and Music</td>
<td>7</td>
</tr>
<tr>
<td>1.8 Some notes on additional reading</td>
<td>8</td>
</tr>
<tr>
<td>1.9 Summary and learning outcomes</td>
<td>9</td>
</tr>
<tr>
<td>1.10 Exercises</td>
<td>9</td>
</tr>
<tr>
<td>2 The Bauhaus</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Background</td>
<td>11</td>
</tr>
<tr>
<td>2.2 The Beginning of the Bauhaus</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1 Principles for the Bauhaus</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Bauhaus developments with new staff</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Movement towards Constructivism</td>
<td>15</td>
</tr>
<tr>
<td>2.5 The last phase of the Bauhaus in Germany</td>
<td>18</td>
</tr>
<tr>
<td>2.6 Summary and learning outcomes</td>
<td>18</td>
</tr>
<tr>
<td>2.7 Exercises</td>
<td>19</td>
</tr>
<tr>
<td>2.8 The structure of the rest of this guide</td>
<td>19</td>
</tr>
<tr>
<td>3 Introduction to Processing</td>
<td>21</td>
</tr>
<tr>
<td>3.1 Processing</td>
<td>21</td>
</tr>
<tr>
<td>3.2 Installing Processing</td>
<td>22</td>
</tr>
<tr>
<td>3.3 A Quick Tour of Processing</td>
<td>23</td>
</tr>
<tr>
<td>3.4 Code examples</td>
<td>23</td>
</tr>
<tr>
<td>3.5 Summary and learning outcomes</td>
<td>24</td>
</tr>
<tr>
<td>3.6 Exercises</td>
<td>24</td>
</tr>
<tr>
<td>4 Origins</td>
<td>27</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>27</td>
</tr>
<tr>
<td>4.2 The Processing display window</td>
<td>27</td>
</tr>
<tr>
<td>4.3 size()</td>
<td>29</td>
</tr>
<tr>
<td>4.4 background()</td>
<td>31</td>
</tr>
<tr>
<td>4.5 Coordinates</td>
<td>32</td>
</tr>
<tr>
<td>4.5.1 Cartesian Coordinate System</td>
<td>32</td>
</tr>
<tr>
<td>4.6 The Origin</td>
<td>32</td>
</tr>
<tr>
<td>4.7 Plane Geometry</td>
<td>33</td>
</tr>
<tr>
<td>4.7.1 point()</td>
<td>33</td>
</tr>
<tr>
<td>4.8 Lines</td>
<td>35</td>
</tr>
<tr>
<td>4.8.1 Zero-Based Indexing</td>
<td>36</td>
</tr>
<tr>
<td>4.9 Size of a pixel</td>
<td>36</td>
</tr>
<tr>
<td>4.10 Summary and learning outcomes</td>
<td>40</td>
</tr>
<tr>
<td>4.11 Exercises</td>
<td>41</td>
</tr>
</tbody>
</table>
8.2 setup() and draw() .. 85
8.3 Persistence .. 86
8.4 Velocity ... 87
8.5 Motion by Coordinate Transformations 87
8.6 Reflection at Boundaries ... 88
8.7 Interaction ... 89
8.8 Gravity and Acceleration .. 90
 8.8.1 Rotation and Acceleration .. 90
8.9 Random Motion .. 93
 8.9.1 Brownian Motion .. 93
 8.9.2 Perlin Noise ... 94
8.10 Motion of Multiple Objects .. 95
8.11 Summary and learning outcomes 97
8.12 Exercises ... 97

9 Cellular Automata in 1D and 2D 99
 9.1 Introduction .. 99
 9.2 Bits and Pixels ... 99
 9.3 Images out of Bits .. 100
 9.4 Three-bit 1D Cellular Automata 101
 9.5 Two-dimensional Cellular Automata 103
 9.5.1 Conway’s Game of Life 103
 9.6 Summary and learning outcomes 105
 9.7 Exercises ... 105
 9.8 Looking forward .. 106
This course is about expressing creative ideas through computing. At the end of the course you will understand some foundational creative processes in the form of computer programs that produce audio-visual content to very high standards. The course provides the foundations of programming for creativity coupled with principles of form, structure, transformation and generative processes for image, sound and video. These methods are the conceptual tools that are widely applied in the creative industries. They are used by designers, special effects technicians, animators, games developers and video jockeys alike.

At the end of this course you will have the facility to program your creative ideas. As such, you will understand more deeply the concepts behind creative and commercial software that is in wide use.

The subject guide for Creative Computing I is divided into two volumes. The first volume will introduce you to the basic materials that you will need to start your own creative portfolio. The second volume will expand on these foundations so that you can develop your own unique tools and methods via programming. It is therefore very important that you become familiar with the contents of this guide.

By the end of this course, you should be able to implement creative concepts that are not easily realised with commercial software packages and, therefore, you will be enabled to demonstrate a high degree of originality in your own creative work.

The assessment of this course will be formed of two pieces of course work and an exam that you will sit at the end of the first year of the programme. The exam will be an unseen written exam. The exam questions will be about the background, techniques and examples in this subject guide, the second volume of this subject guide, and the essential reading (see below) but not the additional reading. While not required, you should read the items on the additional reading list where possible to increase your understanding of the general subject area.

This subject guide is not a course text. It sets out the logical sequence in which to study the topics in the course. Where coverage in the essential texts is weak, it provides some additional background material. Reading the essential and additional texts is important as you are expected to see an area of study from an holistic point of view, and not just as a set of limited topics.

Some general notes about this guide

Website links

Unless otherwise stated, all websites in this subject guide were accessed in March 2014. We cannot guarantee, however, that they will stay current and you may need to perform an internet search to find the relevant pages.
Colour

A colour version of this subject guide is available as a PDF document in the CO1112 Creative Computing I section of the VLE. You may find the colour version easier to follow.

1http://computing.elearning.london.ac.uk
Essential reading

http://www.bauhaus.de (site available in German and English)
http://www-history.mcs.st-andrews.ac.uk/index.html

Additional reading

Itten, J. Design and Form, The Basic Course at the Bauhaus (Thames and Hudson, 1975) [ISBN 0471289302].
Kandinsky, W. Point and Line to Plane (Dover, 1980) [ISBN 0486238083].
Naylor, G. The Bauhaus Reassessed (The Herbert Press, 1985) [ISBN 0906969298, 0906969301(pb)].
Poling, C. V. Kandinsky’s Teaching at the Bauhaus; Colour Theory and Analytical Drawing (Rizzoli, illustrated edition, 1986) [ISBN 0847807800].
Steiner, G. Grammars of Creation (Faber & Faber, 2001) [ISBN 0571206816].
Chapter 1

History of Mathematics and Computing in Creativity

Essential reading

http://www-history.mcs.st-andrews.ac.uk/index.html. Use the History Topics Index and the Biographies Index on this website as a starting point for digging deeper into the subjects introduced in this chapter.

Additional reading

Steiner, G. Grammars of Creation (Faber & Faber, 2001) [ISBN 0571206816].

1.1 Introduction

We begin our study of creative computing with a look at some ways in which mathematics and computing have played roles throughout history in relation to creativity. At different times, these sciences and technologies have opened up creative possibilities; they are also arenas themselves where we see many creative moments throughout history.

We see the latter view from George Steiner, who writes in “Grammars of Creation”:

It is in mathematics and the sciences that the concepts of creation and of invention, of intuition and of discovery, exhibit the most immediate, visible force.

(Steiner (2001), p.145)

We will look at some moments in history, rather than attempt to trace developments through the centuries.
1.2 Earliest Mathematics

We know that mathematical ideas can be seen in written form as far back as the time of the Babylonians (2000–1500 BC). We understand these texts as talking of algebraic problems. One case that appears here involves finding three integers a, b, c such that $a^2 + b^2 = c^2$. Why should this be interesting? One aspect of this known to the Babylonians is that if a rope is used to form a triangle whose sides are such lengths a, b, c, then the triangle has a right angle (an angle of 90 degrees). We are used to being surrounded by objects with right angles, that can fit together easily and help in construction of buildings. But how is a right angle to be formed, without one to start with?

The most well-known case of these numbers is

$$3^2 + 4^2 = 5^2.$$

![Figure 1.1: The 3,4,5 triangle](image)

A natural question to ask is whether there is a general pattern to such combinations of a, b, c, and if we can be sure we have all such combinations. You can check that if $a^2 + b^2 = c^2$, then if we multiply each number by a fixed other number, the resulting numbers have the same property (e.g. $6^2 + 8^2 = 10^2$). From the Babylonian texts, they found a more interesting way of coming up with such numbers: if p, q are any two positive numbers, then let

$$a = p^2 - q^2, \quad b = 2pq, \quad c = p^2 + q^2.$$

Then $a^2 + b^2 = c^2$ (this can be checked easily); it turns out that this gives all possible numbers without a common factor, although that is a lot harder to show.

There are some characteristic features of mathematics here: there is an initial discovery with useful practical consequences, which prompts more general questions. Finding answers involves mathematical invention – it is a lot harder to dream up the equations above than to check that they give us a good answer. In fact, the work of Gödel and others shows—expressed informally—that we cannot find all of mathematics just by deduction from what is already known, so a creative leap is necessary for finding some new mathematical results.

1http://www-history.mcs.st-andrews.ac.uk/Indexes/Babylonians.html
1.3 Ancient Greece

Ancient Greece was important for the development of Western mathematical thought; we owe the systematic development of geometry and the introduction of the deductive method to the ancient Greeks (for deduction, see section 1.6), as well as the discovery of irrational numbers.

Let’s look at what we call Pythagoras’ Theorem. Given any right-angled triangle (the length of each of the sides does not have to be an integer), if we draw a square of each side of the triangle, the sum of the areas of the two smaller squares is the area of the largest square.

![Pythagoras's theorem](http://www.mathsisfun.com/pythagoras.html)

Figure 1.2: Pythagoras’s theorem

There are many different ways of showing this; you might try to think how this could be proved in general. There are some animated versions of the proof, that work by moving parts of the diagram around so that the different areas (and some copies of them) can be put together in different ways. Remember that the claim is that this relationship holds for all possible right-angled triangles. Coming up with a way of showing that this is the case involves inventing new ways of thinking about area and geometrical shape.

1.4 Arab Mathematics and Computation

In the period 800–1400, there was relatively little new mathematics being developed in the West. However, in the Arab/Islamic part of the world, new ideas were developed that affect the way we think about mathematics and represent it to this

2http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Pythagoras.html
3http://www.mathsisfun.com/pythagoras.html
day 4. Not all the mathematicians involved were in fact Muslim (Jews and Christians were involved), and it is worth remembering that North Africa and parts of Spain were part of the Arab world at the time.

It is a tribute to this period that mathematical terms from Arabic have found their way into the English language. Among these are:

zero The Roman numeral system does not have a number “zero”; nowadays, the symbol “0” plays two roles, as a number on its own, and as a part of a numeral system (in base 10, for example). Both these uses came to the West through the influence of Arab mathematics 5.

algebra The beginnings of modern algebra appear with the work of al-Khwarizmi 6; he treated rational numbers, irrational numbers and geometrical magnitudes as algebraic entities. The word “algebra” itself comes from the title of his book from the 9th century, “Hisab al-jabr w’al-muqabala”.

algorithm The term “algorithm” is in fact based on the name “al-Khwarizmi”. The word has passed through Latin, originally referring to the Arabic numbering system, but also associated with different ways of working out solutions to arithmetic problems 7.

Arabic numerals The symbols 0,1,2,3,4,5,6,7,8,9, to which we are accustomed, come from Indian sources to the West via Arabic mathematics 8.

It is much easier to work with this numeral system than with, for example, Roman numerals; try to work out an algorithm for the multiplication of two numbers directly in the Roman system and the difference becomes apparent.

1.5 The Renaissance: Geometry and Perspective

During the Renaissance in the West, there was a flowering of thought both in sciences and in the arts, with interaction between them (for example, Leonardo da Vinci’s anatomical drawings). It is worth looking at Leonardo’s Vitruvian man 9, and thinking about how ideas on art, design, architecture and creativity interact, including the use of two of the three basic shapes from Bauhaus design theory (discussed in the next chapter).

We can look at one connection around this time, that between the mathematical analysis of the geometry of vision, and the introduction of perspective into Western art.

The Renaissance brought with it a questioning of received ideas, and an interest in classical thought as a model that could be surpassed. Brunelleschi 10 shows these traits: he trained as a goldsmith and sculptor, while taking an interest in geometry. In 1415, he worked out the principles of perspective: parallel lines in reality should be depicted as converging to a “vanishing point”, and objects’ sizes should vary inversely with their distance from the plane of the painting.

4http://www-history.mcs.st-andrews.ac.uk/Indexes/Arabs.html
5http://www-history.mcs.st-andrews.ac.uk/HistTopics/Zero.html
6http://www-history.mcs.st-andrews.ac.uk/Biographies/Al-Khwarizmi.html
7http://www.peak.org/~jeremy/calculators/alKwarizmi.html
8http://www-history.mcs.st-andrews.ac.uk/HistTopics/Arabic_numerals.html
9http://en.wikipedia.org/wiki/Vitruvian_Man
10http://www-history.mcs.st-andrews.ac.uk/Biographies/Brunelleschi.html
Inventing Computational Thinking

At this time, earlier paintings depicted scenes “as they are”, such as in the work of Simone Martini11, rather than “as they are seen”.

The interest in the geometry of three-dimensional space can be seen in the work of the artist Uccello12. The artist Dürer is credited with the invention of “perspective machines”, that helped artists master the new techniques, as seen in his own etching, in Figure 1.3 below, of 1525. We might think that these devices would lead to ‘mechanical’ drawings, but in fact Dürer’s own work is anything but mechanical; the mathematics of space had opened up new artistic possibilities.

\textbf{1.6 Inventing Computational Thinking}

Computational devices and algorithmic ideas went hand in hand with mathematics from the earliest times; think of the abacus13, found throughout the world at different times. Astronomy gave ways of predicting the seasons, and methods and tools are associated with it, such as the astrolabe14.

Leibniz15 was a German philosopher and mathematician, who lived from 1646 to 1716. As a philosopher, he tried to provide accounts of knowledge, of truth, and of the relation of perception to the external world.

He thought that mathematics gave access to especially clear and uncontroversial conclusions via \textit{calculations}. He built a calculating machine, which he showed to the Royal Society in London in 1673 – so his interests in this topic were not just theoretical.

Leibniz thought that reasoning in general could be dealt with via calculation, if we could express statements in what he called the \textit{Characteristica Universalis} (universal mathematics). Then, given rules to calculate correct conclusions, reasoning could be done in this new language. Once we wrote down our knowledge in this special language, reasoning could be replaced by computation.

He wrote:

\begin{quote}
Telescopes and microscopes have not been so useful to the eye as this instrument would be in adding to the capacity of thought. . . . If we had it, we should be able to reason in metaphysics and morals in much the same way as in geometry and analysis.
\end{quote}

(Leibniz, quoted in Russell (1900))

11http://www.ibiblio.org/wm/paint/auth/martini
12http://abstract-art.com/abstract_illusionism/ai_03_put_into_persp.html
13http://en.wikipedia.org/wiki/Abacus
14http://en.wikipedia.org/wiki/Astrolabe
15http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Leibniz.html
and also

If controversies were to arise, there would be no more need of disputation between two philosophers than between two accountants. For it would suffice to take their pencils in their hand, to sit down to their slates, and say to each other (with a friend as witness, if they liked): Let us calculate.

(Leibniz, quoted in Russell (1900), p.169)

This idea of having machines use logic for themselves eventually became an impetus for work in Artificial Intelligence.

Since the 19th century, other machines have been built to carry out calculations: mechanical devices in the 19th century, up to programmable electronic machines starting around 1945\(^\text{16}\). Back in 1834, Charles Babbage in England conceived a mechanical computer programmable via punched cards (already in use in Jacquard looms as “programs” to control pattern elements in weaving, via a “card reader”). The computer, which was first described in 1837 and more fully in 1843, was called the Analytical Engine\(^\text{17}\). The 1843 description was extensively annotated by Ada Lovelace\(^\text{18}\), who worked closely with Babbage. In her notes, Lovelace outlined an algorithm intended to be processed by the Analytical Engine, and is therefore regarded by many as the first computer programmer\(^\text{19}\). The construction of the Analytical Engine was never completed, although a partial trial model was assembled in 1871\(^\text{20}\).

It is striking how much of the mathematical theory of computation had been put in place before there were any computers in existence, as we understand the term today. Already in 1936, mathematical characterisations had been worked out, describing which functions (over the natural numbers) could be *computed*. It had been shown that there are some such functions that simply cannot be computed, regardless of which programming language is used and however much time and space is used in the computation. Alan Turing\(^\text{21}\) was one of the pioneers here, along with Alonzo Church and Emil Post.

It had been a long-standing philosophical question whether machines can show intelligence, and Alan Turing was also instrumental in provoking work in Artificial Intelligence\(^\text{22}\). His description of *reasoning machines* breathed new life into Leibniz’s outline proposal: Turing argued that computers could in principle be made to process sensed data following reasoning patterns as humans do, and would then be to all intents and purposes acting intelligently.

The present-day Loebner competition\(^\text{23}\) in Artificial Intelligence is based directly on Turing’s work.

\(^{16}\)http://en.wikipedia.org/wiki/History_of_computing_hardware

\(^{17}\)http://en.wikipedia.org/wiki/Analytical_Engine

\(^{18}\)http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Lovelace.html

\(^{19}\)http://en.wikipedia.org/wiki/Ada_Lovelace

\(^{21}\)http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Turing.html

\(^{22}\)http://en.wikipedia.org/wiki/Turing_test

\(^{23}\)http://www.loebner.net/Prizef/loebner-prize.html
1.7 Mathematics and Music

There has been an interplay between music and mathematics throughout the development of both subjects (Fauvel, Flood and Wilson (2006) cover the history and current state of this interaction). Pythagoras, whom we met above, and his school, investigated how to produce different musical notes (pitches), e.g. by hitting glasses filled with water to different heights, or bells of different sizes (see the illustrations here24). It has been argued that this was the basis of the Ancient Greeks’ interest in rational numbers: the most important intervals in music can be obtained by taking a vibrating string, e.g. guitar, and then not allowing the string to vibrate at points at $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$... of the length of the string, so producing musical harmonics25.

It was from Pythagorean times that mathematics was considered to be composed of the four related studies: astronomy, geometry, arithmetic and music. This persisted into medieval times, where throughout European universities up to the 16th century the final topics studied at university formed the quadrivium, consisting of just these subjects.

As for visual art, there was a renewed interest in understanding music and the mathematics of sound during the Renaissance and later; an example is in the work of the French mathematician Marin Mersenne26 who in 1627 published a book on the mathematics of harmony “L’harmonie universelle”. (Mersenne is known today because his name is attached to the so-called “Mersenne primes”, prime numbers of the form $2^p - 1$ where p is itself prime.)

Later, mathematical analyses were made of the sound waves corresponding to a single note at a fixed frequency; different instruments and different voices give different sound colours (timbres), and it turns out surprisingly that the sound waves involved can be described by a combination of sine waves at frequencies $n, 2n, 3n, \ldots$ where n is the frequency of the base note. This technique of harmonic analysis is due to the French mathematician Fourier27, and is central to current digital sound production techniques.28

We can look at an important recent example of how mathematics enabled new sound worlds to be opened up, in the music of the Greek composer Iannis Xenakis (1922–2001). Many of his ideas are laid out in his book “Formalized Music” (1992). Xenakis was influenced by Ancient Greek culture, and collaborated with Le Corbusier as an architect in France. He saw architecture as being about articulating structures in space, while music involves deploying structures in time, in both cases involving calculation and reasoning. An example in his early piece “Metastasis”, shown in Figure 1.4, involves a musical version of creating curves out of a number of straight lines.

Here each line corresponds to an instrument playing a note whose pitch varies uniformly in time (quickly if the line is steep); the effect is of a mass of changing sound which has edges that move in this “curved” way through time.

He introduced many other new musical possibilities – “Pithopratka” treats the

24http://www.philosophy.com/sensprop/pythagor.html
25http://en.wikipedia.org/wiki/Harmonic
26http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Mersenne.html
27http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Fourier.html
28We will discuss these topics in much more detail in Chapter 5 of Volume 2 of this subject guide.
individual musicians like molecules in a gas, moving according to chance though the sound world, but still having predictable global properties, by making use of the statistical mathematics of gases.

Xenakis showed us one way in which mathematical and computational ideas can be liberating for the artist.

1.8 Some notes on additional reading

A good general overview of the history of mathematics is Steiner’s “Grammars of Creation” (2001), though it supposes a good mathematical background. An account that focuses more on the personalities is Bell’s “Men of Mathematics” (1986). An excellent on-line resource for the history of mathematics is the The MacTutor History of Mathematics archive.

We get a different feel for the invention of mathematics by looking at the way mathematicians describe their own work. There is a collection of snippets from mathematics through the ages in Fauvel and Gray’s “The History of Mathematics: a Reader” (1987). Poincaré was a famous French mathematician who wrote about mathematical invention; there is an interesting comparison between Poincaré and

http://www-history.mcs.st-andrews.ac.uk/index.html
his contemporary the artist Marcel Duchamp by Gerald Holton30. Hofstadter’s “Gödel, Escher, Bach” (1999) remains the best popular account of the interplay between mathematics, science and the arts, all seen as creative domains in their different ways.

1.9 Summary and learning outcomes

This chapter set the scene for starting to learn about creative computing. It presented some elements from the history of mathematics in a creative context, and described how mathematicians and philosophers through the ages have made conceptual leaps in mathematics by applying creativity and imagination. It also introduced the work of some contemporary artists, and demonstrated how mathematics has been influential in their work.

You should now be able to:

- describe some of the major advances in the development of mathematics
- look at different numeral systems and identify the significant differences between them
- discuss how creativity has influenced the advance of mathematical theory
- identify the use of mathematical concepts in the work of some contemporary artists
- listen to music, look at architecture, examine a painting, and so forth, with a perspective that includes the computational aspects of such artworks.

1.10 Exercises

1. Here are some parts of modern mathematical notation. Find out who first introduced these symbols, and arrange them by the date they were first used.
 (a) The number e, the base of natural logarithms: $e = 2.72\ldots$.
 (b) The integral sign \int, as in $\int_0^1 x^2 \, dx = 1/3$.
 (c) The square root sign $\sqrt{}$.
 (d) The square root of -1, $i = \sqrt{-1}$.
 (e) The symbol for infinity: ∞.
 (f) The notation for complex numbers in the form $z = x + iy$, where x and y are the real and imaginary parts of the number z.

2. Sketch out an algorithm for the addition of numbers given using Roman numerals31. The algorithm you sketch out should work for input numbers up to MM (which is 2000 in the decimal system).

This way of representing numbers makes it harder to work out basic arithmetic operations than the modern notation. Describe why it is the case that arithmetic operations are harder to carry out in the Roman numeral system, compared with the decimal system.

30http://muse.jhu.edu/journals/leonardo/v034/34.2holton.html
31http://www.roman numerals.co.uk/roman-numerals/numerals-chart.html
3. One of the principles of perspective is that parallel straight lines in real life should be depicted as converging to a “vanishing point”. This description relates to the point of view of the viewer. Describe in more detail what a vanishing point is, and how this relates to perspective.

Now explain why parallel lines should be shown in this way, by considering a camera taking a photograph of a railway line, looking along the track, and thinking about the angles involved when light travels in a straight line from the track to the camera. In which cases would a vanishing point not be appropriate?

4. Alan Turing described what is now called the Turing Test; he suggested that the question “can machines think?” is too vague to be useful, and could usefully be replaced with the question “can machines pass the Turing Test?”.

Describe the Turing Test. Do you think this is a good test for whether or not a machine can think? (This is a hotly disputed subject, with no agreed answer; what is being asked for here is your own argument, with substantiation, for the viewpoint you are taking.)

5. The composer John Cage often included a mathematical component to his work, and the choreographer Merce Cunningham shared this interest. Look for descriptions of their work together, and discuss how their approaches interact with the topic of creative computing.

6. (a) It is interesting to compare Xenakis’s sketch for Metastasis with architectural work he was doing at the same time with Le Corbusier for the Philips Pavilion in the World Fair in Brussels in 1958. Find some images of this building and Xenakis’s sketches for that.

(b) There are recordings of Xenakis’s Metastasis on the web. If you are interested, find and listen to this seven-minute piece. The sketch shown in Figure 1.4 above appears about 50 seconds before the end of this piece, and is immediately followed by two bars of silence. In the sketch, time is notated left to right, with pitch marked vertically. So initially we hear a set of low-pitched sounds which get higher and closer together, and then after roughly a second, a cluster of higher-pitched sounds enter. The sketch covers about 7 seconds of music.
Chapter 2
The Bauhaus

Essential reading

http://www.bauhaus.de (site available in German and English)

Additional reading

Itten, J. Design and Form, The Basic Course at the Bauhaus (Thames and Hudson, 1975) [ISBN 0471289302].
Kandinsky, W. Point and Line to Plane (Dover, 1980) [ISBN 0486238083].
Naylor, G. The Bauhaus Reassessed (The Herbert Press, 1985) [ISBN 0906969298, 0906969301(pbk)].
Poling, C. V. Kandinsky’s Teaching at the Bauhaus; Colour Theory and Analytical Drawing (Rizzoli, illustrated edition, 1986) [ISBN 0847807800].

2.1 Background

The importance of the Bauhaus in this course includes its attempts to rationalise design and production. The formalisation of these creative ideas lends itself to implementation in computer-aided design and visualisation tools. To understand this we need to review the work of some important individuals and their interactions.

The Bauhaus was founded by the architect Walter Gropius in Weimar in 1919. This school of architecture and design in a small town in Germany was to have a profound effect on artists, designers and art education in both Europe and the USA, leading to long-term influences on society in terms of architecture, interior design and furnishing.

Germany had undergone an industrial revolution following its unification from a number of independent states in 1871. The speed with which Germany had shifted from an agricultural country to an industrial one caused social problems. The population of Germany greatly expanded over the 19th century. Large cities developed where small villages had been and the small cheap dwellings built for the workers led to slum conditions. Transportation infrastructure was expanded, including new railways and roads. Daimler and Benz built their first motor cars in
the 1880s. Major industries such as Krupps expanded from a small steel works in Essen, to an enormous industrial complex manufacturing armaments.

Germany was now an important trading nation and with this rise in importance, there was a related development in German art. Dresden and Munich, followed by Berlin, emerged as artistic centres. The artists in the German Expressionist movement were influenced by the work of Van Gogh and Gauguin with their use of colour to express emotion. Based in Dresden the 'Brücke' artists—Kirchner, Heckel, Bleyl and Schmidt-Rottluff—were influenced also by the linear quality of Gothic art and the fact that the artist carvers were anonymous members of a guild which did not differentiate between art and craft. The Brücke artists wanted their art to “speak to the people”. They published a manifesto calling upon youth to revolt against old established ideas.

In Munich a New Artists' Association was formed. Members included Kandinsky, Jawlinsky, Münter and Franz Marc. They organised an exhibition of work by Picasso, Derain and Vlaminck in 1910, but the group broke up and Kandinsky and Marc formed the 'Blaue Reiter' group. In a publication they produced, Kandinsky wrote that distinctions between different art forms should be broken down.

Kandinsky had arrived in Germany from Russia in 1896. He had studied law, but turned to art and art theories, writing “Concerning the Spiritual in Art”, a justification for abstract art. Kandinsky had a deep interest in the relationship between sound and colour (there is debate over whether he had the condition of synesthesia), and this has an effect on the development of his art\(^1\). He had an interest in colour for its own sake, and over his career he moved away from the representation of recognisable subjects and objects. By 1910 he had produced his first abstract painting of basic shapes, lines and forms. In his “Compositions”, Kandinsky carefully arranged shapes and colour to attempt to communicate feelings to the spectator, whilst in his “Improvisations”, which were more freely painted, he wished to express experiences and feelings.

New ideas concerning the direction of art were developing in other countries. In Russia, Tatlin pioneered constructivism, an abstract art form that made use of machinery and modern materials. In Holland, a group of artists published a journal called De Stijl. Mondrian was the most famous member of the group. The austere, abstract style had more influence on architecture than painting and also an influence on designers working in the Bauhaus.

Walter Gropius (1863–1969) had been a student at the Weimar School of Arts and Crafts when the Belgian architect Henri van de Velde had been its director. Van de Velde pioneered the Art Nouveau style. He designed a building for the school which was opened in 1907, offering courses in printing, weaving, ceramics, book binding and precious metalwork. With growing xenophobia in Germany, van de Velde left his position in 1915, and the school closed in the same year.

Before the outbreak of the 1914–1918 war, Gropius had worked in the design office of Behrens at AEG where he had developed ideas for standardising components for construction and written, with Behrens, a Memorandum on the Industrial Prefabrication of Houses on a Unified Artistic Basis.

\(^1\)http://en.wikipedia.org/wiki/Synesthesia_in_art
2.2 The Beginning of the Bauhaus

In 1907 an organisation called Werkbund, led by Muthesius, an architect, was formed. Muthesius maintained that industry, not the artist, had the energy to make cultural changes. He held that architecture should move towards standardisation. Gropius disagreed with this theory, as he considered that the artist or architect should determine the forms of buildings.

Gropius and his partner Adolf Mayer were successful architects before the First World War. Gropius had designed the model factory for the Cologne exhibition, the Fagus factory\(^2\), furniture and a locomotive. After the war Gropius was asked by the Weimar State Council to formulate his plans for establishing a school of art and architecture. In 1919 Gropius was appointed as director.

2.2.1 Principles for the Bauhaus

Gropius produced the Bauhaus Manifesto to set out his aims for the school.

He wrote that all creative arts were to return to the crafts and there was to be no difference between the artist and craftsman. Architecture was the supreme art form.

Artists must be trained to work for industry. Artists, architects, sculptors and craftsmen should all work to one common goal.

The Bauhaus staff would consist of a master and a journeyman to each workshop, ensuring that techniques as well as design ideas were brought together.

There were to be six categories of craft training:

- **Sculpture** stonemasons, woodcarvers, ceramic workers and plaster casters
- **Metalwork** blacksmiths, locksmiths, founders and metal turners
- **Cabinet making**
- **Painting and decorating** glass-painters, mosaic workers and enamellers
- **Printing** etching, wood-engravers, lithographers and art printers
- **Weaving**

Apart from studies in these areas, students would experience instruction in drawing and painting, including colour theory, the science of materials and basic business studies.

2.3 Bauhaus developments with new staff

Johannes Itten joined the Bauhaus in 1919. He developed the Basic Course of one term’s length. Here the students were taught to develop self-confidence. They were taught theories of form with emphasis on the simple basic forms of circle, triangle and square. Compositions were made employing the three shapes. These shapes

\(^2\)http://www.greatbuildings.com/buildings/Fagus_Works.html
\(^3\)http://www.brynmawr.edu/Acads/Cities/wld/86790/86799m.html
were derived from Cubism and were seen as historically primary in art. Also they are independent of nature and easily produced, appearing in Itten’s Wood and Metal Workshops. In addition, students learned colour theory in order to understand the expressive qualities of colour and colour contrasts, and consideration of materials and texture. The latter were considered essential for commercial artists and industrial designers.

The Processing package, introduced later in this course, can be thought of as a simple workbench providing a basic stock of elementary shapes and colours, together with the tools to combine and manipulate these basic elements, to design and produce novel products. Correspondingly, Bauhaus staff initiated what are now some standard image manipulation techniques. For example, Itten (1975, p.21) has an interesting ‘Light-dark analysis of a picture by Goya’, where the breakdown is into a regular array of squares that predates modern ‘image pixelation’ by more than half a century. Another example is ‘Happy Island’, which is an oil work on canvas. The same Itten text has examples of image kaleidoscoping (1975, pp.56, 57) using regular photographic darkroom techniques, but which can now be simply carried out in standard image processing packages.

The Metal Workshop was founded to develop prototypes for mass production. Gropius maintained that standardisation of goods was the means by which the masses could acquire items, so designs should be suitable for furnishing a house. The workshop was initially led by Itten, then, from 1923, by László Moholy-Nagy. Marianne Brandt and William Wagenfeld achieved the most successful work. Wagenfeld designed table lamps with straight shafts and an opaque glass shade. Brandt produced metal ashtrays, lamps and other household objects. Her lamp reflectors were made of nickel-plated metal, and had moveable shades and arms for good light dispersion.

Brandt, who succeeded Moholy-Nagy as director of the Metal Workshop in 1928, was the only woman on the permanent staff. Most women students joined the Weaving Workshop where they experimented with techniques. They created tapestries using a variety of materials and by 1931 made a range of handmade fabrics in muted colours ideal for mass production.

Paul Klee and Wassily Kandinsky joined the Bauhaus in the early 1920s. Klee and Kandinsky had both been members of Der Blaue Reiter. Klee developed an independent theory of colour and an analysis of the creative process. His work was derived from nature/landscapes, plants, sea, stars and buildings. Kandinsky continued to work on his theories concerning the “science of art”, the underlying elements and themes in discussing a theoretic approach to analysis and synthesis of painting (see, for example, “Point and Line to Plane”, (Kandinsky, 1979)). Another good source for examples of shape and colour work is “Kandinsky’s Teaching at the Bauhaus” (Poling, 1982). There were debates within the Bauhaus concerning the relevance of these ideas in an institution that placed technology at the heart of experimentation and an analysis of material. However the painters stayed as their fame contributed to the success of the school.

Sommerfeld House was designed by Gropius and Mayer in 1921 for a timber merchant. Three students worked on the interior designs: Joost Schmidt made relief

4http://metropolis.co.jp/tokyo/515/art.asp
5http://www.bauhaus.de/english/bauhaus1919/werkstaetten/werkstaetten_metall.htm
6http://www.architonic.com/mus/8100111/1
7http://www.trocadero.com/MuseXX/items/142321/item142321store.html
8http://www.bauhaus.de/english/bauhaus1919/werkstaetten/werkstaetten_weberei.htm
carvings on the staircase, Josef Albers designed the stained glass windows and Marcel Breuer designed the furniture. Breuer’s furniture was influenced by Reitveld’s Red/Blue chair designed in 1917 and illustrated in De Stijl magazine\(^9\).

2.4 Movement towards Constructivism

In 1923 László Moholy-Nagy was invited to teach at the Bauhaus to replace Itten. He was a Constructivist whose work emphasised the importance of the machine. Constructivism, he declared, could expand from an art form into industrial design. Josef Albers had trained as an art teacher before becoming a Bauhaus student. He now began working with Moholy-Nagy on teaching the Preliminary Course where, without using workshop equipment, tasks were given to explore the nature of materials. Moholy-Nagy directed experiments in form. He emphasised that, in an industrial culture, the need to understand the load-bearing properties and other characteristics of materials was essential, linking design and engineering. Moholy-Nagy was interested in the development of photography and reflected light compositions. He experimented with optical and acoustic equipment to make new creations. A starting point in reading about their influence is Borchardt-Hume’s edited collection “Albers and Moholy-Nagy: from the Bauhaus to the New World” (2006).

In 1923, a Bauhaus student, Ludwig Hirschfeld-Mach, wrote a score for a colour sonata of three bars using a combination of light and music. Lights and templates were moved in time to the fugue-like music. In 1924 Hirschfeld-Mach wrote:

> Yellow, red, green, blue in glowing intensity move about on the dark background of a transparent linen screen—up, down, sideways. They join and overlappings and colour blendings result.

(Bayer, Gropius and Gropius (1976), p.65)

Moholy-Nagy experimented with photography, producing photograms and photomontages. He maintained that traditional painting was finished. The move from working on a canvas to creating art through mechanical means meant that artists were no longer involved with producing a piece of art. In 1922 Moholy-Nagy ordered his ‘telephone abstract enamels’ from a factory. He described these works as “enamel pictures executed by industrial methods”\(^10\).

Moholy-Nagy was also involved with typography and page layout, which was itself an art form. He moved away from static lay-outs to dynamic ones, especially in poster work in the style of Lisitsky, a Russian Constructivist whose poster of 1919 shows a red, triangular wedge (representing the Communists) being driven into a circle of white (the White Russian Army)\(^11,12\). These symbols could be easily understood even by an uneducated peasant population.

In 1923, while Germany was in the grip of rising inflation, a competition was held in the Bauhaus to design an experimental house to demonstrate the abilities within the school, the design to be chosen democratically by staff and students. Georg Muche, who had joined the staff as a painter, won with a design for a single storey house,

\(^9\)http://www.terraingallery.org/Anthony-Romeo-Chair.html
\(^10\)http://www.mutualart.com/OpenArticle/Mind-the-Design/CA53B9419178DC4A
\(^12\)http://www.allposters.com/-st/Lazar-Lisitsky-Posters_c81955_.htm
named “Haus am Horn”\footnote{http://www.hausanhorn.de/}. Constructed from concrete, the main part of the house was the living room lit by a clear-storey. Other, smaller rooms were set around it including a small, easy-clean kitchen with built-in storage and where everything was within reach. The aim was for economy of space, time and energy. The house was furnished by members of the school.

The Bauhaus mounted an exhibition in 1923. There were lectures by Gropius and Kandinsky and performances of the Triadic Ballet by Schlemmer\footnote{http://www.meisterhaeuser.de/en/bewohner_5_schlemmer.html} who had painted murals on the walls of the Bauhaus. Music was provided by the Bauhaus jazz band as well as concerts at which works by Hindemith, Busoni and Stravinsky were played. This made Weimar the focus of the avant-garde, but locally Hitler’s National Socialists were gaining popularity and they cut the grant to the Bauhaus, forcing it to re-locate to Dessau in April 1925.

Dessau was then an industrial town where Junkers had their aircraft factory. The Bauhaus was amalgamated with the local trade school. Here the course was re-assessed. Moholy-Nagy and Albers ran the preliminary course and Moholy-Nagy also headed the Metal Workshop.

Marcel Breuer headed the Furniture Workshop while two other Bauhaus trained designers, Herbert Bayer and Joost Schmidt, took on the Printing and Sculpture Workshops. Georg Muche was given responsibility for the Weaving Workshop.

The school’s aim was to research the needs of modern households and produce relevant designs that industry could produce in mass.

Gropius wrote:

\begin{quote}
The creation of standard types for all practical commodities of everyday use is a social necessity.
\end{quote}

Moholy designed a metal house in 1925 while the architects in Gropius’s office designed a new Bauhaus building\footnote{http://www.bauhaus.de/english/bauhaus1919/architektur/index.htm} consisting of two L-shaped buildings with flat roofs, one to house the students and the other to house the workshops. The workshop had a curtain wall made of glass, that allowed people outside to see what the students were creating.

Also built at this time were houses for the staff. They were made of concrete with flat roofs, large windows and balconies. Each house had a studio. They were set in landscaped gardens which were ten minutes walk from the Bauhaus\footnote{http://www.tu-harburg.de/b/kuehn/wg21.html}.

In Dessau, the architects undertook a housing project for workers called the Torten Estate\footnote{http://www.c20society.org.uk/docs/building/bauhaus.html}. These were state financed and built at low cost. They were small two-storey buildings made of concrete with flat roofs. Three hundred and sixteen one-family units were built, each having three bedrooms, a kitchen-diner and a living room. Central heating, double glazing and built-in cupboards were provided. Each house had a large garden for growing vegetables. These houses were intentionally experimental. Gropius decided that a national plan for housing was
Movement towards Constructivism

necessary and should include financial planning, study of methods for industrial production, storage of pre-fabricated units and study of efficient use of materials, as well as standardising building components.

Gropius left the Bauhaus in 1927 and his place was taken by Hannes Meyer (Hans Emil Meyer), whose interest was in social housing. Meyer advocated “a technical, not an aesthetic process” to designing buildings. Past styles were to be rejected in favour of modern. He laid stress on collective rather than individual work. He believed that the new house should be pre-fabricated for building on site. Those involved in building schemes should be economists, statisticians, industrial engineers, standardisation designers, heating engineers and even climatologists, before involving an architect. For Meyer architecture should be functional\(^21\).

Moholy-Nagy insisted that designers should see their ideas through to completion and take note of their impact on individuals and society. He foresaw the time when electrically powered machines would reduce labour hours and the labour force required by industry.

Marcel Breuer experimented with furniture made from tubular steel, for domestic use. He welded pieces of steel together to make a chair\(^22\). Moholy-Nagy photographed the prototype. When it was published in a newspaper, people wanted to buy the chair because it was light, simple, comfortable and inexpensive.

In the Typography Workshop, Herbert Bayer designed the Universal Type\(^23\). He argued strongly that the use of two alphabets (capitals and lowercase) was unnecessary:

\[\text{why should we write and print with two alphabets? both a large and a small sign are not necessary to indicate a single sound. A = a. we do not speak a capital ‘A’ and a small ‘a’. we need only a single alphabet.} \]

\[(\text{Bayer (1938) quoted from Eskilson (2007) p.276})\]

He aimed to produce guidelines for a more precise visual language.

As the depression worsened in Germany, designers began to feel that Meyer was planning to turn the Bauhaus into a trade school. Before the move to Dessau, painters had developed theories of space, form and colour that they taught to the students. Meyer tried to diminish their influence. He increased the staff with architects and began a programme on research into the requirements of social housing. He re-organised the Bauhaus into four departments. Workshops were now to operate for three days. The new departments were building, advertising, interior design and textiles.

Workshops were to become self-financing through commissions. The interior design department, under former student Alfred Arndt, designed low cost furniture for mass production and wallpaper which became very popular and helped finance the department\(^24\).

The textile department liaised with the manufacturing industries and Walter Peterhans joined the advertising department where he focused on teaching photography not as an art form but as a science\(^25\).
Meyer was forced to leave the Bauhaus in 1930 by the Nazis, who accused him of allowing a communist cell into the school.

Mies van der Rohr succeeded Meyer. He had worked with Gropius in Behrens’ office. He had begun to design skyscrapers and was a supporter of functionalism. The school closed for a period and when it reopened it was more a school of architecture than design.

2.5 The last phase of the Bauhaus in Germany

The Nazis had little sympathy with van der Rohr’s ideas on simplicity and functionalism. The school in Dessau was closed and van der Rohr moved the Bauhaus to Berlin. However, after a number of raids by the Nazis the school closed down. Many of those who had worked there eventually settled in the United States of America.

2.6 Summary and learning outcomes

This chapter has given an introduction to the Bauhaus in terms of its development, its main participants, and its influence on the rationalisation of design, manufacturing and production.

With a knowledge of the contents of this chapter and its associated reading you should now be able to:

- name the main person who drove the formation of the Bauhaus, state his profession early in life, name the main area in which he developed ideas at Behrens, and explain how this background shaped his statement of aims for the Bauhaus
- name the main contributors to the development of the Bauhaus and its courses, and briefly describe the background and interests of each of those contributors
- illustrate the practical orientation of the Bauhaus by listing the six categories of craft training, and briefly state what was involved in each
- list the three simple forms utilised in the Basic Course, state their derivation, and give examples of artefacts, designed at the Bauhaus, that utilise those forms
- name two of the fine artists involved in the Bauhaus who contributed to the theory of colour, and describe those contributions
- state who at the Bauhaus was the driving force behind the idea of creating art by mechanical means, and give examples of his work created in this way
- describe and illustrate the influence of the Bauhaus on the design of housing and household artefacts
- describe and illustrate how the Bauhaus influenced trends in design and practice for manufacturing.

2.7 Exercises

Use the reading for this chapter and other relevant texts when working on the following exercises. In your writing, be sure to place any material from sources in
quotation marks and identify the source at the point of use, and provide a full reference list at the end (this is to ensure you avoid plagiarism—see the Study Support section of the VLE for further advice). Long quotations have no value in showing understanding or earning marks. In any assessment it is your own contribution in your own words that matters.

1. Discuss the importance of the contributions of Itten and Albers/Moholy-Nagy in the development of the Foundation Course at the Bauhaus. Include consideration of the contrast between the Nature and Machine approaches and their effects on teaching and outcomes for the students.

2. Discuss which of the Itten and Albers/Moholy-Nagy approaches to design teaching lends itself most easily to implementation and expression, with computer-aided tools for pictorial expression, such as the Processing package used in this course. Include an appraisal of the benefits, or otherwise, of possible languages of basic shapes (such as that of triangle, circle, square), and their differing emphases on two- and three-dimensional work.

3. Discuss whether or not the approach of Kandinsky offers greater opportunities, or greater difficulties, for artistic expression with a computer-based drawing package, than the approaches of Itten and Albers/Moholy-Nagy.

2.8 The structure of the rest of this guide

The preceding two chapters have provided some historical and conceptual context, to allow detailed examination of some of the concepts in the use of computer technology in making creative artefacts.

In the next chapter, we will look at the software package Processing, and the following chapters will examine various concepts in visual design, that are illustrated using Processing. While you work through the material, you should bear in mind that you are expected to become familiar with using Processing, to understand the computational and conceptual issues discussed here and also to consider all of the work in a creative context.
Chapter 3

Introduction to Processing

Essential reading

Additional reading

The year 1984 saw the beginning of a major change in the creative industries which was heralded by the arrival of personal computers with graphical user interfaces (GUIs). The Apple Macintosh was the first widely-available personal computer that could display image, sound, speech, music, video and text. This caught the attention of the design industry and very soon sophisticated audio-visual software packages became the main tools of creative professionals. Among these were Adobe’s Photoshop, for editing and creating images, and Digidesign’s Sound Designer II for editing audio and music. The What-You-See-Is-What-You-Get (WYSIWYG) interface paradigm offered direct manipulation of media objects simply by pointing and clicking.

All media became part of the everyday desktop computing environment and, as a result, computing became an everyday tool in the creative industries. As the capabilities of computers grew, so did the ease with which media could be manipulated. Multimedia computing became a reality in the late 1980s and early 1990s, followed rapidly by the internet and world wide web.

3.1 Processing

We will develop our creative tools in a programming language called Processing. Processing is an open source programming language and environment for programming images, animation and sound. It is widely used by students, artists, designers, architects, researchers and hobbyists for learning, prototyping and production.

The Processing open source project was initiated by Casey Reas (UCLA Design/Media Arts Department) and Ben Fry (School of Design, Carnegie Mellon University). It is an outgrowth of ideas started in the Aesthetics and Computation
Group at the MIT Media Laboratory, and inspired by an earlier Java-based language called Design By Numbers by John Maeda, who is a world-renowned graphic designer, visual artist, computer scientist and Professor of Media Arts and Sciences at the MIT Media Laboratory.

Introduced in 2005, Processing is based on Java, and provides all the functionality that Java offers. It was created to teach fundamentals of computer programming within a visual context and to serve as a software sketchbook and professional production tool. However, it was designed to be far simpler to use than the standard Java distribution. Processing has a user-friendly integrated development environment (IDE) and it has many pre-defined methods for performing graphical and multimedia design tasks with very little user-written code.

As open source software, Processing is an ongoing project and is developed by artists and designers as an alternative to proprietary software tools in the same domain.

Do I need to know Java to use Processing?

It is not essential to know how to program in Java in order to use Processing. This subject guide and the essential reading will give you an adequate knowledge of the Processing programming language. However, as the Processing language is based upon Java, knowledge of Java will undoubtedly help you. We assume that you are taking the CO1109 Introduction to Java and Object-Oriented Programming course at the same time as this course (or have previously studied Java). You should find that these two courses complement and mutually reinforce each other.

Which version of Processing should I use?

At the start of each academic year, we designate the latest version of Processing as our standard version for this course. Any coursework that you submit will be tested on the standard version, so it is best if you use this version. To find out what version is the current standard for the course, look at the CO1112 Creative Computing I pages on the VLE.

Which version of Processing is used in this subject guide?

The current version of Processing at the time of writing this guide was 2.1. Any specific descriptions in this guide refer to this version; if the standard version in your academic year is newer, some of the details may be different. Any important differences will be highlighted on the VLE.

3.2 Installing Processing

Learning activity

Method 1. From our VLE

You can download the course’s current standard version of Processing from the VLE. From the home page at http://computing.elearning.london.ac.uk, navigate to Courses→CO1112 Creative Computing I: Image, Sound and Motion. From there, click on the relevant link to download the installation file.
Method 2. From processing.org

Alternatively, you can download Processing directly from the http://processing.org website. However, note that the version available there may be newer than the standard version being used for the course. While you may wish to try out the latest version, remember that any submitted coursework will be tested against the standard version of Processing. Therefore, you should always check your coursework against the standard version before submitting it.

Once the installation file is downloaded:

Move the Processing installation file to a folder that you want to install Processing to. For example, on Windows you might try making a directory C://Program Files/Processing. Double click on the file and extract the contents to the new directory. See processing.org/tutorials/gettingstarted/ for further instructions.

You should now make a shortcut to allow you to easily run the program. For example, on Windows this can be done by right-clicking on the processing.exe executable file and selecting the “make shortcut” menu item. Select the resulting “processing.exe shortcut” and move it to the desktop. Now you can just go to the desktop and click the Processing icon and it will launch the application.

3.3 A Quick Tour of Processing

In Computer Science, a program is the list of instructions that is written by a human for a computer to execute. In Processing this list of instructions is called a sketch. This is to emphasize that this programming language is designed for creative computing.

To see what this means, click on the program shortcut that you made in the activity above. Once Processing is running click on the File menu and select Examples to bring up a window that lists a large number of example sketches; see Figure 3.1.

Try opening one of the examples, such as Basics→Form→ShapePrimitives, by double clicking on it. When the sketch opens, click on the Run button (which looks like a conventional video or audio Play button—an equilateral triangle with a point to the right) at the top left of the window. There are many example sketches for you to try; see the exercises at the end of this chapter.

3.4 Code examples

The following chapters present many examples of Processing code to demonstrate particular topics and features of the language. You are encouraged to experiment with these examples, by making changes to see how the output is affected, and by using them as the starting point for developing more complex programs. Many of the example programs can be downloaded from the CO1112 Creative Computing I pages on the VLE.
3.5 Summary and learning outcomes

This chapter has been primarily about introducing you to Processing, and describing how to download, install and use it.

You should now be able to:

- explain what Processing is and who wrote it
- download Processing, install and run it
- open and run the example sketches that are bundled with Processing.

3.6 Exercises

Open each of the five sketches listed below, and run them by pressing the Run button at the top of the Processing application.

Try to understand how they work by looking at the code for each sketch in the text area. You should recognise some of the commands from Java, but you will also notice that Processing simplifies standard Java syntax.
Write a brief explanation (two to three sentences) of what each sketch does.

I) Basics → Form → ShapePrimitives
II) Basics → Structure → WidthHeight
III) Topics → Drawing → ContinuousLines
IV) Topics → Drawing → Pattern
V) Basics → Input → MousePress
Chapter 4
Origins

Essential reading

Additional reading

4.1 Introduction

This chapter introduces the foundations of two-dimensional drawing in Processing. The chapter assumes that you have successfully installed Processing, understand how to launch the application, and are able to type in the editing box.

4.2 The Processing display window

Visual artists create on a canvas, composers create on staff paper; in Processing we create on a display window. The display window is a flat rectangular surface with hundreds of thousands of pixels (picture elements) that can be controlled individually to produce light at different intensities. In Processing we type commands into a text document called a sketch. After we make a Processing sketch we can play it by pressing the Run button, as if it were a music player or a video player, for example. Via sketches, we control the individual pixels on the display window. So, the pixels are the raw material that we manipulate in a visual sketch. Note that we may create sound instead of a visual image, but for now we will concern ourselves only with the visual domain.

We must be careful to make a distinction between the display window in Processing and the display device that is attached to your computer, be it a laptop, a tablet, a monitor on your desktop or maybe a wide-screen high-definition plasma display. We will call these physical displays.

In Processing, the display window is an interface to a window that is displayed automatically, see Figure 4.1. This window is sent to the display device via the operating system. In contrast to Java, where we must explicitly program every
graphical interface element ourselves, the Processing environment will create a window for us automatically, but we must provide the details of the size of the window that we want.

For brevity, throughout this guide we will sometimes refer to the Processing display window as the screen. However, when we do this, do keep in mind the distinction between this and the physical display, as described above.

Learning activity

In any programming language, it is interesting to see what happens when we provide the system with no input whatsoever. Let's start by seeing what Processing does if we do nothing.

Make a new Processing sketch.
Save the blank sketch to your Processing folder.
Try pressing Run on your blank sketch.
What happens?
Comments on the activity

We might expect nothing to happen, but something happens. A blank display window is drawn to the screen. What size do you think this display is?

4.3 size()

To change the size of the display window we use a built-in Processing command called size(). You should go to the Processing Help→Reference menu item. This launches your web browser with the Processing help pages. It is often useful to look at the complete form of the Help pages rather than the abridged form. That way you can see all the built-in commands in Processing (see Figure 4.2). Note that to find the Help page entry for any of the built-in commands or the language elements, type the command that you are looking for into a sketch window, highlight the text, right-click and select Find in Reference from the pop-up menu.

Figure 4.2: The built-in Help pages in Processing.

The parentheses () mean that this command is a method that takes arguments. Arguments are simply values that we use to control the behaviour of a method. The full name of the size() method is size(int width, int height). This tells us that the size() method requires two arguments, both of which are integers, and they control the width and height of the Processing display window.
The width is simply the number of pixels horizontally across the window, and the height is the number of pixels the window will display vertically. For example, the following Processing sketch makes a display window that is 128 pixels wide and 512 pixels high:

```processing
size(128,512);
```

This sketch consists of a single line of code. Try running it. In Processing, like many other computer languages, individual chunks of code must be terminated by semi-colons. This makes it easy for the Processing program to identify where each statement ends. Line breaks are allowed between parts of a single statement, but statements must be terminated with a semicolon.

Here are some other sizes for you to try. How they appear on your physical display device depends on the type of device you are using, especially its physical dimensions and screen resolution.

Learning activity

Launch Processing.

Make a new folder for your sketches.

Make a series of sketches consisting of display windows of the following different sizes:

```processing
size(512,128);
size(128,512);
size(1024,128);
size(1024,768);
size(8192, 8192);
size(-1, -1);
```

Did all of these commands produce useful results? If not, do you understand why not?

Save these sketches to your file system using the File→Save menu item.

Re-load the sketches using the File→Open menu item.

Try modifying and re-saving some of your sketches.

Comments on the activity

Processing automatically makes a new folder for your sketch and creates a special file called a Processing Development Environment (PDE) file and places it in that folder. You only need to choose the name and the top-level directory where you want to save the sketch; Processing does the rest.

It is good practice to organise your files into directory trees in some systematic way. For example, you might make a directory called CC1, and inside it make a directory called Chapter6, then save your sketches for that chapter within that folder. This way, it is easier to remember where your sketches are when you want to refer back to them at a later time.
When developing code in Processing (or any other language), you should get into the habit of saving copies of your work (“backing up”) at regular intervals. The simplest way to do this is to decide on a naming convention for your sketches—for example, you might call the first version of your sketch mysketch-version1.pde, the next mysketch-version2.pde, etc.¹ That way, if you make changes in your code that you later wish to remove (or, worse, if you accidentally delete your sketch!), you can easily revert to the most recently saved backup version.

4.4 background()

We now start to explore how to draw in our sketch. Just like paper, or a canvas, we start with a background colour that we specify using the background() method.

Learning activity

Try typing and running the following sketch:

```java
size(512,512);
background(0);
```

What do you see? Now try the following sketch:

```java
size(512,512);
background(100);
```

and finally try:

```java
size(512,512);
background(255);
```

Type in the sketches above and run them. What is the meaning of the number in the brackets in the background() statements?

Comments on the activity

The number in the brackets is the level of light intensity that is emitted from each pixel in the display window. It can take on values between 0 and 255 where 0 is zero light intensity (black) and 255 is maximum light intensity (white). Values in between are various shades of grey that get progressively lighter as the number gets larger.

Processing’s display window is a model for the physical display that you are viewing. So increasing the value of the number argument of the background() method increases intensity of light on the physical display. You are controlling the display using a simple, yet powerful, software interface.

¹There are more sophisticated ways of backing up your code, for example by using a Version Control System such as Git (http://git-scm.com).
4.5 Coordinates

4.5.1 Cartesian Coordinate System

A point is the smallest unit of drawing in *Processing*. Each position on the display window is labeled by its coordinate pair, \((x, y)\):

Example

```java
size(512,512);
background(255);
stroke(0);
point(256,256);
```

In this example, we have made the window 512 × 512 pixels, set the background colour to white and the stroke colour to black. Type in this example. Can you see the pixel in the centre?

The single pixel is a little too small for our purposes because the pixels are very tiny, see Section 4.9. Instead, let us increase the size of what we can see by changing the thickness of the stroke:

Example

```java
size(512,512);
background(255);
stroke(0);
strokeWeight(10);
point(256,256);
```

Type in this example, what do you see? From now on we shall use a large stroke to make points visible enough for us to see them.

4.6 The Origin

The most important point in the Cartesian coordinate system is the origin. This is the point at \((0,0)\), that is zero in the x-dimension and zero in the y-dimension. In *Processing*, where is the point \((0,0)\)? We shall call the point \((0,0)\) the origin, or O, for short. Not to be confused with 0 (zero).

Once we know the position of the origin, we can draw in the plane using points and lines. The origin in *Processing* is the point in the top left corner.

This placement of the origin at the top left of the screen, with x-values increasing from left to right and y-values increasing down the screen, is common in computer graphics and image processing applications such as *Processing* and the Java two-dimensional graphics libraries. However, this is a different position for the
Figure 4.3: The origin in Processing is the point in the top left corner, that is point (0,0). The grid is made by placing lines at a regular interval in both the horizontal and vertical directions.

origin than the usual location in geometry, as taught in mathematics courses. In mathematics, the origin is usually at the bottom left with y-values increasing as we move up the page. That is, here we use left-hand axes, while in mathematics it is conventional to use right-hand axes.

4.7 Plane Geometry

In plane geometry, a plane is the area onto which lines and points are drawn. This can simply be thought of as an infinitely large sheet, where each position on the sheet is indexed by a number from zero to the screen width minus one for the x dimension and from zero to the screen height minus one for the y dimension. Cartesian coordinates in two dimensions always occur as pairs of numbers such as (x1, y1) and (x2, y2) for two different points p1 and p2. Figure 4.3 shows a plane with origin at the top left-hand corner.

4.7.1 point()

Now that we have a background, we can add foreground content. The concepts of foreground and background will become much more developed later. For now, the background is an initially blank solid-coloured canvas and the foreground is anything that is drawn upon it.

To draw a point we call the point() method:
size(512,512);
background(0);
stroke(255);
strokeWeight(1);
point(256,256);

What do you see? Each point on the Processing screen corresponds to a pixel on your computer’s monitor. A pixel is the smallest unit of change that is possible on your computer’s screen. Now try the following:

size(512,512);
background(0);
stroke(255);
strokeWeight(1);
point(256,256);
point(256,257);
point(256,258);
point(256,259);
point(256,260);

What do you see? What are the dimensions of what you see? Remember, dimensions are measurements of an object’s width and height. In this case the dimensions are width=1 pixel, height=5 pixels.

Learning activity

Figure 4.4: PointSketch, a simple mouse-controlled point drawing sketch.

Type in the sketch shown in Figure 4.4. Run the sketch. What do you think it does? (Hint: try pressing the left mouse button while moving the mouse pointer over the display window.) What is the name of the method defined in this sketch?
We will discuss the use of methods in later chapters, but how is the method being used by Processing?

![Figure 4.5: Output of the PointSketch sketch.](image)

Comments on the activity

draw() is a built-in method. You should look at the help pages for a description of what it is and how it works. Processing calls the draw() method automatically in a loop. This allows us to make interactive drawing applications such as the one shown in this example.

4.8 Lines

In Processing, a line is defined by two points that are joined by filling in all the points in between. The line() method allows us to define the two end-points of a straight line:

```java
size(512,512);
background(255);
stroke(0);
strokeWeight(10);
line(100,200,200,200);
```

It doesn’t matter in which order the two points are specified. We would get the same results with:

```java
size(512,512);
background(255);
stroke(0);
strokeWeight(10);
line(200,200,100,200);
```

These two describe the same line. We can check our intuition by looking just at the end points alone:

```java
size(512,512);
strokeWeight(10);
point(100,200);
point(200,200);
```
It is the same two points, so the same line will be drawn, the direction of drawing is different, but that has no influence on what we see, the same pixels will get coloured in both cases.

4.8.1 Zero-Based Indexing

The screen we’ve been using is 512 × 512 pixels. But, the pixels are addressed in the range 0–511. This type of indexing is called zero-based indexing and it is the form of addressing used in Java and in some other programming languages such as C and C++. We must remember that the pixel indexed by the number 512 is actually the 513th pixel; this is off the screen because the last visible pixel is 511. How can we make a screen where pixel number 512, in either the x-dimension or y-dimension, is included on the screen? The answer is that we make the screen at least 513 pixels in its width dimension, x, and height dimension, y. For example:

```java
size(513, 513);
line(512, 0, 512, 512);
```

Here, all the pixels at position 512 in x or 512 in y are drawn because the screen is 513 pixels wide and 513 pixels tall.

4.9 Size of a pixel

Pixels can be seen as the individual light sources that are packed together on your computer’s display to make an image. They are the smallest unit of control that we have in making an image. We start our creative computing journey by learning how to manipulate pixels to draw images on the display device.

Before we embark on drawing to our display device, it will be useful to know how big the pixels are and, therefore, how big the screen that we are drawing to is. In short, we would like to know the dimensions of our display and of our created images.

To work out these sizes, we need to know two things. The first is the size of the physical display, and the second is the display resolution. The size of a pixel, then, is its width and height in standard physical units.

Computer displays are measured by the length of the diagonal. For example, I am currently writing this subject guide on a laptop computer that has a 15-inch screen, however, let us work in centimeters for the purpose of international standardisation. An inch is 2.54 centimeters (cm) so 15 inches is $15 \times 2.54 = 38.1$ cm, this is the distance from the top left to the bottom right of the screen, a diagonal line.

Figure 4.6 shows the monitor and the diagonal length of 38.1 cm. From the specifications of my laptop given in its user manual, I know that its display has an aspect ratio of 4/3; this is the ratio of the width to the height of the screen. This means that the width is 4/3 or 33.33% larger than the height.
Even if we are unable simply to measure the height and width of the display directly, we can calculate these values as long as we know the (diagonal) screen size and aspect ratio.

By Pythagoras' Theorem we know that the sum of the squares of the width and the height equal the square of the diagonal length. We also know the aspect ratio, so we can write down the following equation:

$$\text{width}^2 + \text{height}^2 = \text{diagonal}^2$$

We know that width and height are related by width = aspectRatio \times height. So we can substitute for width:

$$(\text{aspectRatio} \times \text{height})^2 + \text{height}^2 = \text{diagonal}^2 = (38.1\text{cm})^2$$

Now we rearrange the equation to obtain the height of the screen:

$$(1 + \text{aspectRatio}^2) \times \text{height}^2 = (38.1\text{cm})^2$$

and finally:
\[height = \sqrt{(38.1\text{cm})^2 / (1 + (4/3)^2)} = 22.86\text{cm} \]

\[width = 4/3 \times 22.86\text{cm} = 30.48\text{cm} \]

I know that my laptop display has a resolution of 1024 × 768 pixels. Now, we can calculate the size of a pixel by dividing the width of the display by 1024, the total number of pixels across the screen, or the height by 768, the total number of pixels down the screen. We find that the width and height measurements of a pixel are each 0.0298cm. That means there are 33.59 pixels active to make a line of pixels that is a centimeter across and 33.59^2 ≈ 1129 pixels to fill a square centimeter (≈ means approximately; the actual answer is 1128.678 pixels but we have rounded the answer to the nearest whole number of pixels).

Learning activity

How many pixels are there in the whole screen assuming the 1024 × 768 resolution? If stretched out in one long line, how long would this single-line display be?

Comments on the activity

To work out how many pixels there are in total we multiply the dimensions together. For example, 1024 × 768 = 786432 pixels. To work out how many centimeters a line of this many pixels would be, we calculate 786432 × 0.0298 = 23435.6 cm— that is ≈ 234 meters or 0.23 kilometers.

As an illustration of how to use Processing to work out the answers to the display dimension problem, Figures 4.7 and 4.8 show a Processing sketch that computes these dimensions, and its output. Don’t worry if you don’t understand all the syntax for now, you will learn what it all means in your Java course and in later sections of this subject guide. But see if you can find where the diagonal dimension and aspect ratio are specified, and where the answers to the screen width and height, and dimensions of a single pixel are calculated.

While we are looking at this sketch, it is worth highlighting one aspect that is often a source of error for novice programmers. Notice that the variable \textit{A} is defined as:

float \textit{A} = 4.0/3.0; // correct

You might wonder why we did not just use:

float \textit{A} = 4/3; // incorrect!

The reason is that 4 and 3 are treated as integers by Processing and Java, and the result of dividing two integers is also an integer. So in this case 4/3 would be rounded down to the closest integer, giving a result of 1. This then gets assigned to variable \textit{A}, which is a float, so \textit{A} takes the floating point value 1.0. In order to avoid these integer arithemic problems when we desire an answer as a floating point number, we specify the numbers to be divided as floats from the start. Hence, 4.0/3.0 in this example gives us the answer that we want, which is 1.33333.
// Solve the screen pixel size problem
float D = 38.1; // Length of diagonal
float A = 4.0/3.0; // Aspect ratio
float h = sqrt(pow(D,2)/(pow(A,2)+1)); // Height (cm)
float hPix = 768; // Height (pixels)
// Go backwards to check our result
float d = sqrt(pow(A*h,2)+pow(h,2));
// Now print the results
println("All Screen Units in Centimeters");
println("screen diagonal = "+ d);
println("screen width = "+ A*h);
println("screen height = "+ h);
println("pixel width = "+ h/hPix);
println("pixel height = "+ h/hPix);
println("pixels per cm = "+ 1/(h/hPix));
println("total pixels = "+ A*hPix*hPix);
println("total pixel cms = "+ A*hPix*h);

Figure 4.7: screenMath, a Processing sketch that calculates the size of pixels for given screen diagonal length \(D\), aspect ratio \(A\) and vertical height in pixels \(hPix\).

<table>
<thead>
<tr>
<th>All Screen Units in Centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen diagonal = 38.1</td>
</tr>
<tr>
<td>screen width = 36.4</td>
</tr>
<tr>
<td>screen height = 22.059999</td>
</tr>
<tr>
<td>pixel width = 0.02975623</td>
</tr>
<tr>
<td>pixel height = 0.02975623</td>
</tr>
<tr>
<td>pixels per cm = 33.505862</td>
</tr>
<tr>
<td>total pixels = 768432.0</td>
</tr>
<tr>
<td>total pixel cms = 23408.599</td>
</tr>
</tbody>
</table>

Figure 4.8: Text output of screenMath sketch.

Learning activity

Type in the Processing sketch of Figure 4.7. Look in your computer’s User Manual to find the diagonal length and aspect ratio of your display device. Change these values in the Processing sketch and run it.

a) How big is a pixel on your display device?
b) How many pixels per centimeter fit on your display device?
c) For a 38.1cm display, with resolution 1024 \(\times\) 768 pixels, what is the size of a 512 \(\times\) 512 Processing sketch in cm\(^2\)?

Comments on the activity

Hint: The first two lines define the diagonal length and aspect ratio of the screen. The fourth line defines the screen resolution in the y-dimension.
Learning activity

Type in the following short Processing sketch:

```java
void setup() {
  println("display: " + displayWidth + "x" + displayHeight);
  println("toolkit: " +
    java.awt.Toolkit.getDefaultToolkit().getScreenResolution() + " dpi");
}
```

Run the sketch and look at the text output.

Comments on the activity

This sketch makes use of the Processing variables `displayWidth` and `displayHeight`, which give the dimensions of the entire physical display (not just the Processing display window).

The sketch also calls a library method in the underlying Java AWT toolkit to obtain the Dots Per Inch (dpi) density of the physical display.

These methods can be useful when writing code for deployment on devices of unknown display size.

4.10 Summary and learning outcomes

In this chapter, we have seen that we can turn the display of individual pixels on and off using the `point(x,y)` method. Each pixel on the display window has a unique two number address; just like we use latitude and longitude to identify locations on the globe, we need an x-value and a y-value. These values are the number of pixels to count in the x direction from left to right starting at 0, and the number of pixels to count in the y-dimension starting from the top at 0 pixels. Just as the combination of a particular latitude and longitude reading uniquely identifies a specific place on the globe, both the x-value and y-value together uniquely identify a pixel on the display window. The same pair of x-value and y-value will always identify that same specific place on the Processing window.

It is possible to turn each individual display pixel on and off to make points on the display window. A series of points in a row makes a line. But the points are very small (how small?) so it takes a lot of points in a row to produce a line that is significant.

To avoid the repetitive turning on and off of pixels to make lines, or other shapes, we use the pre-defined line command as part of a Processing sketch. A sketch is entered as statements separated by a semicolon. The semicolon is required for the machine to be able to read and interpret the sketch, and a new line at the end of a statement is optional and is for human readability of the sketch.

The `line()` method takes two pairs of numbers that represent the start point and the end point of the line, and joins them by filling in the pixels in between. So, when we draw lines in computing, we are really drawing a series of points. In this case
we let an algorithm decide which points to fill in to draw the line, so there is already computing going on under our noses. The algorithm for drawing lines is quite complicated and is covered in a later section. For now, it suffices that lines are really a collection of points with the property that the points join the end points by a straight line, the shortest possible pattern of connected turned-on pixels between two points on the display window.

We now have a method for joining two points with a line. In the next chapter, we will see how lines can be made to have many different meanings.

You should now be able to:

- describe what Cartesian coordinates are, and how the origin relates to these
- explain what the Processing methods size(), background(), point() and line() do
- describe what a pixel is and how this relates to the Processing display window and to the physical display
- write Processing sketches to draw pictures using points and simple lines.

4.11 Exercises

1. In section 4.2 you created a blank sketch, and were asked what size you thought the sketch was. Without guessing or simply using judgement, how would you find out the actual size? Why do you think this particular size is used as a default? Note that when we talk about size, we could be referring to actual lengths, or to numbers of pixels; it is important to become comfortable about both of these uses.

2. In Processing, what is the difference between a sketch and a display window? Why does Processing need both?

3. In Section 4.5.1 you saw an example where we used strokeWeight() to change the thickness of the stroke. What is actually happening when this is done? What is the relation between the pixels and the point? At the end of that section we say that we will use a large stroke to make points more visible. Why then is it useful for us to have pixels as small as they are? Would not making the physical size of a pixel bigger improve visibility? What do we lose when we do this?

4. Write a Processing sketch that covers the display window with vertical lines. Now modify it to do horizontal ones as well. Think about the distance between the vertical lines, and the distance between the horizontal lines. You could make them evenly spaced, or you could try to make them less regular. See what kinds of pictures you can come up with just through innovative use of drawing lines — this does not purely have to be through spacing; there are many other creative dimensions that you can explore. Also, think about this in terms of the previous chapters on the Bauhaus, and creativity in mathematics. In the next chapter you will learn more about lines in Processing and lines as a creative vehicle, but for now, try to see how much you can do with what you already know.

5. Does a bigger physical display size mean there are more or less (or the same number of) pixels on the screen? Discuss this, and think about what it means for Processing and its implementation — will Processing run in the same way on computers with different sized screens and screen resolutions?
Creative computing I:
image, sound and motion

Volume 2
M. Casey with T. Taylor and M. Magas
CO1112
2014

Undergraduate study in
Computing and related programmes

This is an extract from a subject guide for an undergraduate course offered as part of the University of London International Programmes in Computing. Materials for these programmes are developed by academics at Goldsmiths.
For more information, see: www.londoninternational.ac.uk
This subject guide was prepared for the University of London International Programmes by:
Michael Casey, Department of Music, Dartmouth College, USA
Tim Taylor, Department of Computing, Goldsmiths, University of London
Michela Magas, Goldsmiths Digital Studios, University of London

Additional help with production was provided by:
Sarah Rauchas, Department of Computing, Goldsmiths, University of London

This is one of a series of subject guides published by the University. We regret that due to pressure of work the authors are unable to enter into any correspondence relating to, or arising from, the guide. If you have any comments on this subject guide, favourable or unfavourable, please use the form at the back of this guide.

First published 2008
This edition published 2014
Contents

Preface

1 Colour 1
 1.1 Introduction 1
 1.2 Processing color type 1
 1.3 RGB colour space 2
 1.3.1 Defining color values 3
 1.3.2 Colour mixing 5
 1.3.3 Colour gradients 7
 1.3.4 Secondary colours 8
 1.3.5 Tertiary colours 11
 1.3.6 Transparency and colour blending 13
 1.4 HSB colour space 18
 1.5 Colour schemes 23
 1.5.1 Two-colour schemes 23
 1.5.2 Three-colour schemes 23
 1.6 Summary 27
 1.7 Exercises 27

2 3D Graphics 29
 2.1 Introduction 29
 2.2 3D coordinate system 30
 2.2.1 The screen (viewport) 30
 2.2.2 3D rendering 32
 2.2.3 3D lines 32
 2.2.4 Using OpenGL 33
 2.3 3D drawing 34
 2.3.1 3D primitives 34
 2.3.2 beginShape(), endShape() 34
 2.3.3 Perspective 36
 2.4 3D transformations 36
 2.4.1 translate(x,y,z) 37
 2.4.2 scale(sx,sy,sz) 39
 2.4.3 rotateZ(), rotateY(), rotateX() ... 42
 2.4.4 Camera transformations 45
 2.4.5 pushMatrix(), popMatrix() 46
 2.4.6 Lights 48
 2.5 Texture mapping 48
 2.5.1 Transparent textures 53
 2.6 Algebra for perspective and affine transformations; point and line 54
 2.6.1 Vectors and matrices; addition and multiplication 54
 2.6.2 Translation, scaling and rotation of objects in 2-dimensional coordinate space 58
 2.6.3 Perspective 61
 2.6.4 Translation, scaling and rotation of objects in 3-dimensional coordinate space 62
 2.6.5 Point and line in two and three dimensions 65
3D Motion and Control

3.1 Introduction .. 69
3.2 Motion in a straight line 69
 3.2.1 Camera motion 70
 3.2.2 Camera transformations 72
 3.2.3 Motion parallax 72
3.3 Circular motion 74
3.4 Motion control 75
 3.4.1 Types of navigation 75
 3.4.2 Mouse .. 75
 3.4.3 Mouse flythrough 76
 3.4.4 Keyboard 78
3.5 Creative applications of 3D motion 79
 3.5.1 A 3D paint brush 79
 3.5.2 Painting by 3D swarms 83
 3.5.3 Painting by gestures 83
3.6 Summary .. 83
3.7 Exercises 87

Image

4.1 Introduction 89
4.2 PImage ... 89
 4.2.1 Image formats and encoding algorithms 90
 4.2.2 PImage methods 90
4.3 Image display 91
 4.3.1 Image crop 92
4.4 Image transformation 92
 4.4.1 Image scaling 92
 4.4.2 Coordinate system transformations 95
 4.4.3 3D transformations 97
4.5 Layers ... 98
4.6 Summary ... 104
4.7 Exercises 104

Sound

5.1 Introduction 105
5.2 Digital audio 105
 5.2.1 Sampling 106
 5.2.2 Displaying a waveform 111
5.3 Audio file formats 112
5.4 Audio in Processing 112
5.5 Installing the Sonia library in Processing 113
5.6 Playing a PCM sound file 114
 5.6.1 Adjusting the playback rate 114
5.7 Digital audio synthesis 115
 5.7.1 Sine wave 115
 5.7.2 The digital Theremin 120
 5.7.3 Square wave synthesis 122
 5.7.4 Noise synthesis 122
5.8 Music synthesis 125
 5.8.1 Rhythm 125
5.9 Summary ... 127
5.10 Exercises ... 127

6 Generative Systems .. 129
 6.1 Introduction .. 129
 6.2 Fractals ... 129
 6.2.1 Iterated function systems and substitution systems 130
 6.2.2 L-systems .. 131
 6.2.3 The Koch snowflake ... 132
 6.2.4 Two-handed substitutions 133
 6.2.5 Plant modelling with bracketed L-systems 135
 6.3 Genetic algorithms .. 140
 6.3.1 The Blind Watchmaker algorithm 140
 6.3.2 User-guided genetic algorithms versus fitness functions 142
 6.3.3 Biomorphs .. 142
 6.3.4 Modelling genetic processes 143
 6.3.5 Modelling the development process 145
 6.3.6 Modelling the reproduction process 146
 6.3.7 Selecting from a population 147
 6.4 Summary ... 149
 6.5 Exercises .. 149

7 Introduction to Creative Thinking 151
 7.1 Essential components: technology, usability, aesthetics 151
 7.2 Technology: Flash Professional, Blender and HTML5 153
 7.3 User behaviour ... 155
 7.4 Cultural context .. 156
 7.5 Summary ... 159
 7.6 Exercises .. 159

A Creative Brief .. 161
 A.1 Rules of the playground ... 161
 A.2 Observing behaviours ... 162
 A.3 Interpreting your observations 169

B Example Examination Questions 171