UNIVERSITY | INTERNATIONAL

OF LONDON | PROGRAMMES

Graphical object-oriented and
internet programming in Java
Volume 2

T. Blackwell
C02220
2009

Undergraduate study in
Computing and related programmes

This is an extract from a subject guide for an undergraduate course offered as part of the
University of London International Programmes in Computing. Materials for these programmes
are developed by academics at Goldsmiths.

For more information, see: www.londoninternational.ac.uk

Goldsmiths

UNIVERSITY OF LONDON

This guide was prepared for the University of London International Programmes by:
Tim Blackwell

This guide was produced by:

Sarah Rauchas, Department of Computing, Goldsmiths, University of London.

This is one of a series of subject guides published by the University. We regret that due to pressure of work the author is
unable to enter into any correspondence relating to, or arising from, the guide. If you have any comments on this subject
guide, favourable or unfavourable, please use the form at the back of this guide.

University of London International Programmes
Publications Office

32 Russell Square

London WC1B 5DN

United Kingdom

www.londoninternational.ac.uk

Published by: University of London
© University of London 2009

The University of London asserts copyright over all material in this subject guide except where otherwise indicated. All rights
reserved. No part of this work may be reproduced in any form, or by any means, without permission in writing from the
publisher. We make every effort to respect copyright. If you think we have inadvertently used your copyright material, please
let us know.

Contents

Preface v
Introduction e e e e e e e v
AImS e e v
Objectives o i i e e e v
Learning oUtCoOmeS v v v v vt e e e e e e e e vi
ASSeSSMENt L e e e e e e vi
How to use this subject guide vi
Reading i e e e viii
Notation e viii
Before you do anythingelse viii

1 Advantages 1

1.1 Introduction e 1

1.2 Important networking features of the Java Programming Language . 2

1.3 Learning outcomes i it 2

2 Statics 3

2.1 Introduction e 3

2.2 Statics e e e e e e 3

2.3 Final e 3

2.4 Maths e e e e e 4

2.5 Wrapping a Primitive 4

2.6 Autoboxing 4

2.7 Wrappermethods o 5

2.8 Number formatting 5

2.9 Dates e e e e e e e e 5

2.10 Staticimports o it e e e e e e e e 5

211 SUMMALY .« ¢ v v vt e e e e e e e e e e e e e e e e e e e 6

2.12 Programming e 7

213 VectorMaths 7

2.14 Vector maths test program 9

2.15 Better teSt program i e it et e e e e e e e e e 11
2.15.1 TeStreporto e e 12

2.16 Learning OULCOMES . . . « ¢ . v v v v v v e vt e e e e e e e e e 13

3 Exceptions 15

3.1 Introduction e 15

3.2 Catch! 15

3.3 Multiple exceptions e 16

3.4 Duck! e 16

3.5 Relevance to network programming 16

3.6 Summary e e e 17

3.7 Programming e 17

3.8 Vector maths with exception throwing 17

3.9 Catching VecMath exceptions 18

3.10 Safevectormathst 19

3,11 Safetest e e e 20

3.12 Learning OULCOMES . . . « ¢ v v v v v v v e et e e e e e e e e e 21

Graphical Object-Oriented and Internet Programming in Java — Volume 2

4 Swing
4.1 Layout managers
4.2 Borderlayouts
4.3 Flowand Boxlayout.
4.4 Other components v v v v v vttt e
4.5 Summary e
4.6 Programming e
4.6.1 JEditorPane
4.6.2 URL . . o e e e e e e
4.6.3 StringBuffer/StringBuilder
4.7 Dynamic HTML
4.8 Pageloader.
4.9 Simple browser
4.10 Better browser i it e e e e e e e
4.11 Learning OULCOMES « v v v v v v vt et e e e e e e e e
5 Streams
5.1 Introduction
5.2 Datastreams« . i it e e e e e e
5.3 Reading and writingtoatextfile.
5.4 Reading bytes
5.5 Summary e e e e e e e e e e
5.6 Programming
5.7 Terminal Input
5.8 Read Bytes o it
5.9 Source Viewer
510 MIITOT . . . o v vttt e e e e e e e e e
5.11 Fileviewer e
5.12 Hostinfo e
5.13 WhereamI? i i e e
5.14 SourceSaver e
5.15 Tagand URL €Xtractor ¢ v v v v v v v e oo
516 Webspider e e
5.17 Learnin€ OUtCOMES v v v v v v v e e e e e e e
6 Serialisation
6.1 Introduction
6.2 Saving state
6.3 Restoring state i i i e e
6.4 VersionID L
6.5 Summary e e e e e e
6.6 Programming e
6.7 GooWorld
6.8 Flapping polygon,
6.9 A Goo World application
6.10 StartagainGooWorld 0.
6.11 GooWorldrestarted
6.12 Learning outComes v v v vttt e e e e
7 Networking
7.1 Introduction
7.2 Clients e
7.3 SOCKELS . . v v i e e e e e e e e
7.4 Servers e e e
7.5 Summary e

7.6 Programming e

7.7 Simplestclient
7.8 Simplestserver. e e e e e
7.9 GoOoableS SEIVEr i i e e e e e e e
7.10 Gooablesclient
7.11 Learningoutcomes
8 Threads
8.1 Introduction e
8.2 Multi-threadinginJava
8.3 Statesofthread,
8.4 The thread scheduler
8.5 Concurrency problems,
8.6 Other techniques
8.7 Summary e e
8.8 Programming e
8.9 Ticktock
8.10 Threaded Gooablesserver
8.11 Commandlinecontrol
8.12 Threaded Gooables server with control
8.13 Threaded Gooablesclient
8.14 Objectserver v v i v i e e e e e e e e
8.15 Objectclient e
8.16 Thread pool Gooablesserver
8.17 Learning OULCOMES+« v v v vt i it et

9 Distributed computing

9.1 Introduction i e e
9.2 RMI . . e
9.2.1 Helpers e
9.2.2 Making the remote service
9.2.3 Examplecode 0.,
9.3 Serviets e e e e
9.3.1 Servlet lifecycle
9.3.2 HTTPrequests
9.4 RelationshipwithJSP
9.5 Applets e e e e
9.5.1 Appletsaresafe
9.5.2 Applications and applets,
9.5.3 Appletsand HTML
9.6 Lifecycle
9.7 Deployment v v i it
9.8 JavaWebStart Lo
9.9 Summary e e e
9.10 Programming
9.11 ManyGooworlds
9.12 Gooable
9.13 BoxX e
9.14 Blob. e
9.15 Butterflies
9.16 Many Worlds application
9.17 Learning OULCOMES« v v v v v vttt et e e e

10 Finally ...

Graphical Object-Oriented and Internet Programming in Java — Volume 2

11 Revision 117
11.1 0 OVervIeW o v v v i e e e e e 117
11.1.1 0 StaticS. . . v v v v e e e e e e e e 117
11.1.2 Exceptions 118
11.1.3 Swing o o oo e 118
11.1.4 Streams e 119
11.1.5 Serialisation 120
11.1.6 Networking i i 121
11.1.7 Threads 121
11.1.8 Distributed Computing 123

11.2 Sample examination questions, answers and appendices 125

Preface

Introduction

The course is split into two parts, with a separate volume for each part. This volume
constitutes the second part of the course. Part I (Volume 1) covers Object-Oriented
programming in Java, graphical user interfaces and event-driven systems. Part II, in
this volume, is concerned with the principles of client-server computing, techniques
of interconnectivity in Java and interactive web-based computing systems.

Aims

The course as a whole aims to give students an insight into the object-oriented
approach to the design and implementation of software systems. The course also
considers specific features of the programming language Java, in particular,
graphical interfaces and event driven applications.

The second part of the course, which is covered in this volume, is intended to give
students the necessary background to understand the technical software aspects of
how computers communicate across the internet. Students will be introduced to the
underlying principles of client-server computing systems and will gain the required
conceptual understanding, knowledge and skills to enable them to produce simple
web-based computing systems in Java.

Objectives

1. To re-enforce students’ knowledge of object-oriented programming in Java. (Part
D

To introduce students to the notion of graphical user interfaces. (Part I)

To introduce students to the notion of event-driven systems. (Part I)

To teach students the principles of client-server computing. (Part II)

To introduce the main techniques for interconnectivity in Java. (Part II)

o vk v

To produce students able to develop rudimentary interactive web-based
computing systems. (Part II)

Graphical Object-Oriented and Internet Programming in Java — Volume 2

Learning outcomes

On completion of this course students should be able to:

1. Analyse and represent problems in the object-oriented programming paradigm.
(Part I)

Design and implement object-oriented software systems. (Part I)
Build an event-driven graphical user interface. (Part I)

Explain the main principles for client-server programming. (Part II)
Design and implement rudimentary client side system. (Part II)
Design and implement a rudimentary server-side system. (Part II)

No vk wDd

Integrate his or her knowledge and skills to produce a rudimentary web-based
application. (Part II)

Assessment

Coursework contributes 20 per cent of the final mark on the complete unit. An
unseen examination paper will contribute 80 per cent of the final mark.

Important note. The information given above is based on the examination structure
used at the time this guide was written. Please note that subject guides may be used
for several years. Because of this we strongly advise you to always check the current
Regulations for relevant information about the examination. You should also
carefully check the rubric/instructions on the paper you actually sit and follow those
instructions.

How to use this subject guide

This subject guide is not a self-contained account, but is a companion to the course
text Head First Java 2nd edition (HFJ) by Kathy Sierra and Bert Bates. It is essential
that you obtain this book.

It will also be helpful to have access to Java Network Programming (JNP) by Elliotte
Rusty Harold.

There are a number of other books listed in the section below called Reading, which
expand on a number of topics and you are advised to deepen your understanding by
referring to these additional texts where directed.

There are eleven chapters in this guide.Most chapters are in two parts. The first part
is based on a number of readings from HFJ. The second part is devoted to
programming. Here you will find programming examples and activities based on the
material covered in the first part of the chapter.

In short, the chapters are comprised of

» readings from HFJ (not Chapter 3), followed by a summary of the key points
from each reading

vi

m a bulleted chapter summary
® programming

m learning outcomes.

It is important that you read HFJ when directed, and then read the commentary to
check that you have understood the main points. The commentaries are not
sufficient in themselves. You must refer to HFJ and you are recommended to engage
with the many interesting activities that the authors suggest. The chapter summaries
collect together the main points. All chapter summaries are reproduced in the
revision chapter. These summaries can be used to ensure that you are on top of the
material, and as a revision guide.

The programming sections are an integral part of the course. Aside from the
program examples, you will find programming activities. You must attempt these
activities before reading on. The activities are followed by a programming solution.
Please realise that there is rarely a unique solution to a programming exercise, so do
not feel disheartened if your solution differs from mine. However you should read
my program, and the accompanying commentary, to understand my solution.
Moreover, new material, especially concerning Java graphics, will be found in the
commentaries.

The CD-ROM The accompanying CD-ROM provides all the source code and
compiled programs. Many activities are centred on making a drawing or an
animation. You should run these programs before attempting the activity so that you
can see what to aim for (but do not peek at the code!).

The CD-ROM contains the following:

m an Index which serves to navigate through the folders
» demonstration programs
m source and compiled code for all programming examples and exercises

m source and compiled code for Goo, a special animation package developed for
this course

m the Goo API, which is the reference document for the Goo code

m the Java API, which is the reference document for the Java code.

You may wish to develop your programs with an integrated program development
environment (IDE) such as Eclipse. It is beyond the scope of this course to show you
how to use Eclipse but it is well worth investing some time in learning to use this
valuable programming tool yourself. Eclipse can be downloaded for free from
http://www.eclipse.org/. This guide tells you how to write code in a simple
editor and compile and run from the command line. However an IDE such as Eclipse
simplifies many programming tasks and greatly helps with debugging.

At the end of each volume, there is a revision guide that summarises the main
concepts you should have acquired from each chapter, and also gives you some
sample examination papers that can guide some of your study.

Graphical Object-Oriented and Internet Programming in Java — Volume 2

Reading

The following is a list of essential and supplementary reading.

Essential reading

Head First Java (second edition), Kathy Sierra and Bert Bates (Sebastopol, Calif.: O’Reilly 2005) [ISBN
0596009208 (pbk)].

Recommended reading

Java in a Nutshell, David Flanagan (Sebastopol, Calif.: O'Reilly, 2005) [ISBN 0596007736].

Learning Java, Patrick Niemeyer and Jonathon Knudsen (O'Reilly, 2005).

Effective Java (second edition), Joshua Bloch (Upper Saddle River, NJ; Harlow: Addison Wesley, 2008) [ISBN
0321356683 (pbk)].

Java Network Programming, Elliotte Rusty Harold (Sebastopol, CA; Farnham: O’Reilly, 2005) [ISBN 0596007213 (pbk)].

Java Cookbook, lan F. Darwin (O'Reilly Media Inc., 2004) [ISBN 0596007019; 978-05960007010].

Notation

Java keywords, source code, variable names, method names and other
source code are printed in typewriter font. Filenames, directories and the
command line in bold type. Three dots, ..., denotes omitted source code in a code
excerpt. Concepts and things, where they are distinguishable from their
representative Java names (classes , interfaces, method names ...), are printed in
normal type.

Before you do anything else

Insert the CD-ROM into your computer, open the demo folder, and run
ManyWorldsApp.

You are watching the flight of clouds of blobs (left hand world) and flapping
polygons (right hand world). The two worlds are connected by two ‘worm holes’.
The exit and entrances to the worm holes are shown by the dark grey discs. Objects
from either world, when flying over the exit disc in their world will ‘fall’ into the
other world, appearing at the exit disc.

You will observe that the objects are mini-goo animations, similar to those you coded
in Volume 1, except that these mini animations move across the screen to form a
larger animation. You can think of each type of mini-animation as a creature.

In this demo, the two worlds are launched from a single application on a single
computer.

Imagine instead that the worlds are running on separate machines, connected by
worm holes that extend across the Earth.

viii

Imagine that there are many worlds connected by a tangle of wormholes, and many
different species of goo creature populating the worlds. You are watching your
world, awaiting the arrival of an exotic species. Perhaps you are designing your own
species, introducing creatures of this species into your world, and letting them
disperse throughout the goo’niverse.

Graphical Object-Oriented and Internet Programming in Java — Volume 2

Chapter 1
Advantages

Essential reading

JNP Chapter 1.

1.1 Introduction

Java is the first language designed with networks in mind. Java provides solutions to
many network problems such as platform independence, security and international
character sets. And thanks to the extensive API, little code is needed even for
full-scale applications. In brief, some of the peculiar advantages of Java are:

1. Java applications are safer than off-the-shelf software.
2. Network programs in Java are (relatively) easy to write.

3. Java uses threads rather than processes; this is important for scalable web
servers.

4. Java has an exception-handling mechanism; this is important for web
applications that need to run continuously.

5. Java is object oriented, and all the software engineering principles that you saw
in Volume I can be employed.

6. Java is a full language, rather than a scripting language, and is therefore very
versatile. Java has only a small execution-speed disadvantage compared to
C++, which is another object language.

7. Java has an extensive Java API, especially for networking. The important
packages in this regard are:

® java.io

® java.nio

® java.net

m java.applet

® java.rmi

m javax.servlet

m javax.servelt.http

m java.lang.Thread.

Graphical Object-Oriented and Internet Programming in Java — Volume 2

1.2 Important networking features of the Java Programming
Language

There are four important parts of the JPL which we need to find out about: Threads,
Java IO, Serialization and Exception Handling. These features play a vital role in
Java network programming. Additionally, some further work on Swing will enhance
your graphical interfaces.

This volume begins therefore with these Java techniques (which aren’t restricted to
networks, but are applicable to all Java programming). The course then continues
with some fundamental networking: how to connect to a host, writing an internet
browser, a spider and peer-to-peer messaging. The course ends with an introduction
to distributed computing.

But before we can do any of that, there are some general programming aspects that
we need to look at.

1.3 Learning outcomes

By the end of this chapter, the relevant reading and activities, you should be able to:

m describe the advantages of Java as a programming language

m describe the main networking features of Java: threads, Java IO, serialisation
and exception handling.

Chapter 2
Statics

Essential reading

HFJ Chapter 10 (not number formatting or static imports).

2.1 Introduction

This chapter covers some aspects of ‘general programming’ in Java. By this we mean
useful, non-object Java techniques. Many useful programs can be written as a
sequence of procedures (method calls) and do not need sophisticated data
structures. Top-down programming is sufficient in many situations.

2.2 Statics

Reading: pp. 273-281 of HFJ.

A mathematical function such as ROUN D does the same thing every time it is
invoked. There is no associated state. These functions are pure behaviour. Such
functions are represented by static methods in Java.

A static method can be invoked without any instances of the method’s class on the
heap. Static methods are used for utility methods that do not depend on a particular
instance variable value. This means that static methods are not associated with any
particular instance of that class.

A static method (such as main) cannot access a non-static (i.e. instance) method. If
you write a class with only static methods then it usually makes no sense to
instantiate objects of that class. You can prevent instantiating by marking the
constructor as private.

There is only one copy of a static variable and it is shared by all members of the
class. A static method can access a static variable.

2.3 Final

Reading: pp. 282-284 of HFJ.

Some quantities such as the speed of light, or the value of pi just do not change.
Constants such as these are marked static final.

Graphical Object-Oriented and Internet Programming in Java — Volume 2

A final static variable is either initialised when it is declared, or in a static initializer
block,

staticq{
SPEED_OF_LIGHT = 299792458;
}

Static finals are conventionally named in uppercase with underscores separating
words. Note that this is a convention, rather than contributing to the semantics of
the language.

A final variable cannot be changed after it has been initialised. An instance variable
can also be marked final. It can only be initialised in the constructor or where it is
declared.

Methods and classes may also be final. A final method cannot be overridden and a
final class cannot be extended.

2.4 Maths

Reading: pg. 286 of HFJ.

java.lang.Maths has two static final variables (constant variables, that is), and
various static methods. The methods correspond to mathematical functions such as
SQUAREROOT, COS and ROUND.

2.5 Wrapping a Primitive

Reading: pg. 287 of HFJ.

All primitive values can be wrapped into objects, and wrapper reference classes can
be unwrapped:

Integer intObj = new Integer(i);

int j = Integer.intValue(intObj);

2.6 Autoboxing

Reading: pp. 288-291 of HFJ.

Java 5 and beyond supports autoboxing: the automatic wrapping and unwrapping of
values in method arguments, return values, Boolean expressions, operations on
numbers, assignments, list insertion and removal ... in fact almost anywhere a
primitive or a wrapper type is expected.

For example,

Integer i = 42;
it++;

>

Static imports

Integer j 5;

Integer k = i + j;

Note that +, ++ operators are NOT defined to act on objects. In fact the compiler
will convert wrapper objects to their primitive types before the operations are
applied.

2.7 Wrapper methods

Reading: pp. 292-293 of HFJ.
Wrappers have static utility methods e.g.

String s = "2997792458";
int ¢ = Integer.parselnt(s);

double kmPerSec = ¢ / 1000.0;
s = Double.toString(kmPerSec) ;

2.8 Number formatting

Reading: pp. 294-301 of HFJ.

In a gesture of conciliation towards C programmers, Java 5 has introduced number
formatting in print statements. The syntax is similar to C and C++’s printf.

2.9 Dates

Reading: pp. 302-306 of HFJ.

Date() is fine for getting today’s date, as in Date today = new Date(); but use
Calendar for date manipulation. In fact Calendar is abstract. You can obtain an
instance of a concrete subclass by calling a static method:

Calendar c = Calendar.getInstance();

2.10 Static imports

Reading: pp. 307-309 of HFJ.

A static class or a static variable can be imported in an effort to save typing. This can
make code easier to read, but may create name conflicts. Only use a static import if
the static member is called often from within your class, and you are sure there are
no naming collisions.

Graphical Object-Oriented and Internet Programming in Java — Volume 2

211 Summary

A static method can be called using the class name rather than an object
reference variable.

A static method can be invoked without any instances of the method’s class on
the heap.

Static methods are used for utility methods that do not depend on a particular
instance variable value.

Static methods are not associated with any particular instance of that class.
A static method (such as main) cannot access a non-static (i.e. instance) method.

Mark the constructor as private if you wish to prevent clients instantiating the
class.

There is only one copy of a static variable and it is shared by all members of the
class.

A static method can access a static variable.
Java constants are marked static final.

A final static variable is either initialised when it is declared, or in a static
initializer block.

Static finals are conventionally named in uppercase with underscores separating
words.

A final variable cannot be changed after it has been initialised.

An instance variable can also be marked final. It can only be initialised in the
constructor or where it is declared.

A final method cannot be overridden.
A final class cannot be extended.

java.lang.Math only has static methods. Some very useful methods in this class
are: random(), abs(), round(), min(), max(). These, and others are listed
in the APIL

All primitive values can be wrapped into objects (Integer intObj = new
Integer(i); and unwrapped: (int i = Integer.intValue(intObj) ;.

Java 5 and beyond supports autoboxing: the automatic wrapping and
unwrapping of values.

Wrappers have static utility methods e.g. Integer.parseInt(s) and
Double.toString(kmPerSec);

A format string uses its own special little language; the format string enables
precise control of number printing.

Date is fine for getting today’s date, but use Calendar for date manipulation.

Calendar is abstract: get an instance of a concrete subclass like this: Calendar c
= Calendar.getInstance();

Static imports save typing, but can lead to name collisions.

Static methods encourage the procedural style of programming.

Vector Maths

2.12 Programming

The Math class has many useful operations on numbers. Suppose we wish to define
a similar utility class for vectors. Here are some common vector functions:

An n-dimensional vector a is a list of real (components), a = [a1, a3 ... ay].
A vector can be multiplied by a number, s, sa = [saq, sa; . . . sa,].
The vector dot product is a-b = [a1b1 + axby + . .. + anb,];

and the cross product in three dimensions is defined as
c=axb= [a2b3 — a3b2, CL3b1 — a1b3, (l]bz — azbl].

Vectors can be added and subtracted (component by component).
The length of a vector is calculated from Pythagoras’ formula: |a] = v/a.b

and vectors can be normalised to unit length. If & is the normalised form of a then
|a] = 1.

Given point A = (a1, az...a,) then a = [a1,az ... a,] connects O to A i.e. a = 0A. The
distance between A and B is therefore |b — a|.

The angle 6 between a and b can calculated from the relation: a x b = |a||b|cosf

Learning activity

Write a vector utility class, VecMath. The class should implement the vector functions listed above.

2.13 Vector Maths

package numbersandstatics;
import static java.lang.Math.x*;
public class VecMath {

private VecMath () {
}

public static double length(double[] a) {

return sqrt(dot(a, a));
}

public static void normalise (double[] a) {

double mag length(a);

for (int i = 0; i < a.length; i++) {
ali]l = ali]l / mag;

}

Graphical Object-Oriented and Internet Programming in Java — Volume 2

}
public static double distance(double[] a, double[] b) {

return length(subtract(a, b)) ;
}

public static double[] add(double[] a, double[] b) {

int numCpts = a.length;

double[] ¢ = new double[numCpts];

for (int i = 0; i < numCpts; i++) {
clil = alil + bl[il;

}

return c;

}

public static double[] subtract(double[] a, double[] b) {

int numCpts = a.length;

double[] ¢ = new double[numCpts];

for (int i = 0; i < numCpts; i++) {
clil] = ali] - bl[il;

}

return c;

}

public static double[] mult(double scalar, double[] a) {

double[] b = new double[a.lengthl];

for (int i = 0; i < a.length; i++) {
b[i] = scalar * al[il;

}

return b;

}
public static double[] cross(double[] a, double[] b) {

if (a.length == b.length && b.length == 3) {
double[] ¢ = new double[3];
c[0] = a[1] * b[2] - al[2] * b[1];
c[1] = al[2] * p[0] - al0] * b[2];
c[2] = al0] * b[1] - al1] * b[o0];
return c;
} else
return new double[0];

}
public static double dot(double[] a, double[] b) {

int numCpts = a.length;

double result = 0.0;

for (int i = 0; i < numCpts; i++) {
result += al[i] * bl[i];

}

return result;

}

public static double angle(double[] a, double[] b) {

Vector maths test program

return acos(dot(a, b) / (length(a) * length(b)));
}

The methods are a straightforward implementation of the common vector
operations. The constructor has been marked private to prevent instantiations of
VecMaths, and java.lang.Math has been statically imported. (This static import is
only of marginal benefit since Math is only called twice.)

Learning activity

Write a test class for your VecMath, and test each method. Numerical output should contain four decimal
places. Use static imports wherever appropriate.

2.14 Vector maths test program

package numbersandstatics;

import static java.lang.Math.x*;

import static java.lang.System.out;

import static java.lang.String.format;
import static numbersandstatics.VecMath.x*;

public class VecMathTest {
public static String vecFormat(String formatStr, double[] a) {

String s = "(";
for (int i = 0; i < a.length - 1; i++) {
s += format (formatStr, al[i]) + ", ";
}
s += format (formatStr, ala.length - 1]) + ")";
return s;

public static double toDegrees (double radians) {

return (180 / PI) * radians;
}

public static void main(String[] args) {
// initialise two vectors
double[] a = { 5, 0, 0 };
double[] b = { 5 * cos(PI / 6), 5 * sin(PI / 6), 0 };

// format String
String formatStr = "J.4f";

// print a = 0A and b = 0B
out.println("a = " + vecFormat(formatStr, a) + ", " + "b = "

+ vecFormat (formatStr, b));

// print lengths of a and b

Graphical Object-Oriented and Internet Programming in Java — Volume 2

out.println("|al = " + format(formatStr, length(a)) + ", [Db]

+ format (formatStr, length(b)));

// find unit vector pointing along b

double[] ¢ = { 3, 4 };

normalise (c) ;

out.println("c hat = " + vecFormat (formatStr, c));

// is it really a unit vector?
out.println("length of ¢ hat = " + format(formatStr, length(c
)));

// vector addition and subtraction
c = add(a, b);

out.println("a + b
¢ = subtract(a, b);
out.println("a - b

+ vecFormat (formatStr, c));

" + vecFormat (formatStr, c));

// scalar multiplication
c = mult (0.5, b);
out.println("0.5b = " + vecFormat (formatStr, c));

// dot product
out.println("a.b = " + format(formatStr, dot(a, b)));

// distance between A and B
out.println("dist AB = " + format(formatStr, distance(a, b)))

>

// cross product
c = cross(a, b);
out.println("c = a x b = " + vecFormat(formatStr, c));

// is c at 90 degrees to a and b7
out.println("a.c = " + dot(a, c) + ", b.c = " + dot(b, c));

// angle AOB
double angle = toDegrees(angle(a, b));
out.println("angle AOB = " + format(formatStr, angle));

main initialises two test vectors and systematically calls each method in VecMath.
Some static imports shorten the code; probably justifiable in a small program such as
this. However one problem did become apparent when coding: how to format the
elements of a numerical array? The solution used here is to write a utility method
that applies String.format to each element in turn. In order to prevent naming
ambiguity, this method was not named format.

Learning activity

The above tests were too conservative. There are two problems with the implementations within VecMath
which could easily cause a client program to crash. Can you spot them? Write more tests to demonstrate
which methods are unsafe and what happens when they are called by a careless client.

10

Better test program

2.15 Better test program

package numbersandstatics;

import
import
import
import

public

static
static
static
static

java.lang.Math.x*;
java.lang.System.out;
java.lang.String.format;
numbersandstatics.VecMath. *;

class VecMathUnsafeTest {

final static int TEST_O 0;
final static int TEST_1
final static int TEST_2 2;

]
—

public static String vecFormat (String formatStr,

String s = "(";
for (int i = 0; i < a.length 1; i++) {
s += format (formatStr, alil]l) + ", ";
}
s += format (formatStr, ala.length - 1]) + ")";

return s;

}

public static double toDegrees(double radians) {

return (180 / PI) * radians;
}

public static void main(String[] args) {

int test = TEST_O;
if (args.length > 0)

test = Integer.parselnt (args[0]);
double[] a = new double[] { 5, 0, 0 };
double[] b = new double[] { 5 * cos(PI / 6), 5 =*
0 I;

switch (test) {

case TEST_O:
b = new double[] { 5 * cos(PI / 6),
break;

case TEST_1:

new double[] { 5,
break;

case TEST_2:
b = new double[] { 0,
break;

default:

}

5 x sin(PI

a = 0, 0, 1 };

0, 0 };

// format String

String formatStr = "J.4f";

// print a = 0A and b = 0B

double [] a) {

sin(PI / 6),

/ 6), 0 };

11

Graphical Object-Oriented and Internet Programming in Java — Volume 2

out.println("a = " + vecFormat(formatStr, a) + ", " + "b = "
+ vecFormat (formatStr, b));

// print lengths of a and b
out.println("|al = " + format(formatStr, length(a)) + ", [bl

+ format (formatStr, length(b)));

// find unit vector pointing along b

double[] ¢ = {3, 4};

normalise (c);

out.println("c hat = " + vecFormat(formatStr, c));

// is it really a unit vector?
out.println("length of c hat = " + format(formatStr, length(c
1))

// vector addition and subtraction
c = add(a, b);

out.println("a + b
¢ = subtract(a, b);
out.println("a - b

" + vecFormat (formatStr, c));

" + vecFormat (formatStr, c));

// scalar multiplication
c = mult (0.5, b);
out.println("0.5b = " + vecFormat(formatStr, c));

// dot product
out.println("a.b = " + format(formatStr, dot(a, b)));

// distance between A and B
out.println("dist AB = " + format(formatStr, distance(a, b)))

>

// cross product
¢ = cross(a, b);
out.println("c = a x b = " + vecFormat(formatStr, c));

// is c at 90 degrees to a and b?
out.println("a.c = " + dot(a, c) + ", b.c = " + dot(b, c));

// angle AOB
double angle = toDegrees(angle(a, b));
out.println("angle AOB = " + format(formatStr, angle));

2.15.1 Test report

Three tests were performed by supplying 0, 1, 2 as an argument to the Java
interpreter (i.e. by typing (java numbersandstatics/VecMathUnsafeTest 0 at the
command line).

1. TESTO

a = (5.0000, 0.0000, 0.0000), b = (4.3301, 2.5000, 0.0000)
[al = 5.0000, [b|] = 5.0000
b hat = (0.8660, 0.5000, 0.0000)

12

Learning outcomes

length of b hat = 1.0000

a + b = (9.3301, 2.5000, 0.0000)
a-b=(0.6699, -2.5000, 0.0000)
0.5b = (2.1651, 1.2500, 0.0000)
a.b = 21.6506

dist AB = 2.5882
c =axb= (0.0000, 0.0000, 12.5000)
a.c = 0.0, b.c = 0.0
angle AOB = 30.0000
Everything is working fine.
2. TEST 1

a = (5.0000, 0.0000, 0.0000, 1.0000), b = (4.3301, 2.5000, 0.0000)
lal = 5.0990, |bl = 5.0000

b hat = (0.8660, 0.5000, 0.0000)

length of b hat = 1.0000

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3
at numbersandstatics.VecMath.add(VecMath. java:35)

at numbersandstatics.VecMathUnsafeTest.main(VecMathUnsafeTest.java:70)

This test crashes the program. The bug is traced back to VecMaths line 35 where
the code assumes that the two vectors have the same number of components.

3. TEST 2

a = (5.0000, 0.0000, 0.0000), b = (0.0000, 0.0000, 0.0000)
l[al = 5.0000, |bl = 0.0000

b hat = (NaN, NaN, NaN)

length of b hat = NaN

a + b = (5.0000, 0.0000, 0.0000)

a - b= (5.0000, 0.0000, 0.0000)

0.5b = (0.0000, 0.0000, 0.0000)

a.b = 0.0000

dist AB = 5.0000

c =axb= (0.0000, 0.0000, 0.0000)
a.c = 0.0, b.c = 0.0
angle AOB = NaN
Some numerical values have been set at NaN (not-a-number). This ‘value’ is the
result of dividing by zero. Ensuing calculations will reveal surprising results. The
divide by zero error happens whenever a normalise and angle is called with a
vector of zero length.

We shall see one way of fixing these runtime errors in the next chapter.

2.16 Learning outcomes

By the end of this chapter, the relevant reading and activities, you should be able to:

m describe the advantages of Java as a programming language

m describe the main networking features of Java: threads, Java IO, serialisation
and exception handling

m explain how a static method can be called or invoked

m describe what static methods are used for

13

Graphical Object-Oriented and Internet Programming in Java — Volume 2

14

explain the term static final
describe how static final variables are initialised and how they are usually named

understand that a final method cannot be overridden and that a final class
cannot be extended

describe how primitive values can be wrapped into objects and how wrapper
reference type classes can be unwrapped

explain what autoboxing is

understand that + and ++ operators are not defined to act on objects
understand that wrappers have static utility methods

describe how number formatting works

understand how a static class or a static variable can be imported, the
advantages of this, as well as the limitations

describe how a static method can be called using the class name, or invoked
without any instances of the method’s class on the heap

understand that static methods are used for utility methods that do not depend
on a particular instance variable value

understand that static imports can lead to name collisions

understand that static methods encourage the procedural style of programming.

Chapter 3
Exceptions

Essential reading

HFJ Chapter 11.

3.1 Introduction

Most of the time you should aim to write safe code so that clients of your classes are
not surprised by the messages they get back, and so that your classes do not crash
their program.

However, certain programming activities such as asking the operating system to do
something (e.g. pause execution for 100 ms) or interfacing with a device (print a
file), or connecting to a network are inherently dangerous because your program
cannot know exactly what may happen.

Flaws in your own code are known as bugs and we hope that OO techniques can
minimise these. But some runtime errors are outside your control. Luckily Java
includes a mechanism so that you can prepare for the unexpected and unusual at
runtime with special exception handling code.

3.2 Catch!

Reading: pp. 319-328 of HFJ.

The compiler makes sure that checked-exceptions are caught by your code. For
example, the API tells us that the method prototype for read (byte[] b) of
java.io.InputStream is:

public int read(byte[] b) throws IOException

This means that read throws an exception object which the calling method must
‘catch’

try{
int numRead = inputStream.read(bytel[] Db);

}
catch (IOExeption e){
System.out.println(e);

}

Graphical Object-Oriented and Internet Programming in Java — Volume 2

16

The risky call is placed in a try block. The accompanying catch block contains
emergency code in case something goes wrong. The JVM will execute this code in
that eventuality. Here, the catch just prints the exception to the terminal, but
normally you would want to do something (e.g. wait a while and then try and read
from the input stream again). Occasionally you may wish to write a finally block,
which will run regardless of an exception.

3.3 Multiple exceptions

Reading: pp. 329-324 of HFJ.

A method can throw more than one exception and they must all be caught,
preferably by one catch block after another. Exceptions are polymorphic and it is
possible to catch all the exceptions with a single supertype catch. Certainly a catch
(Exception e) block will catch everything because all exceptions subclass
java.lang.Exception, but this is not advisable because your handler will not have
precise information about what went wrong. Since the JVM works its way down the
list of catch blocks, it is better to place more specific catch calls (i.e. lowest
subclasses in the inheritance tree) higher up the list.

An important subclass of Exception is java.lang.RuntimeException. Subclasses of
this, such as java.lang.ArrayIndexOutOfBoundsException (which is thrown to
indicate that an array has been accessed with an illegal index), are ignored by the
compiler. Runtime exceptions are usually due to faulty code logic, rather than
unpredictable or unpreventable conditions that arise when the code is running.

Exceptions should only be used for very unusual circumstances caused by
interactions with the outside world, and not by the internal logic of your code.

3.4 Duck!

Reading: pp. 335-357 of HFJ.
The thrown exception can be ducked by your code by declaring it, as in
public int riskyMethod() throw IOException{

return inputStream.read(byteArray);

3

The stack diagrams on pg. 336 of HFJ show how the duck mechanism works, and if
main ducks as well, the uncaught exception will shut the JVM down.

3.5 Relevance to network programming

Network programs must function for many hours without supervision, and are in
contact with the outside world. Therefore the exception handling mechanism of Java
is invaluable.

Vector maths with exception throwing

3.6 Summary

» A method can throw an exception object if something goes wrong at runtime.
m All exceptions subclass java.lang.Exception.

m The compiler does not check that possible runtime exceptions are handled in
your code.

m However the compiler does care about checked exceptions, and insists that
they are declared or wrapped in a try/catch block.

m A method throws an exception with the keyword throw followed by a new
exceptions object.

m If your code calls a checked exception throwing method, you must either duck
the exception or enclose the call in a try/catch block.

3.7 Programming

We noticed in the last chapter that our VecMath class could be dangerous if a client
called a method with two double[]’s of different size; and if normalise() or angle() is
called with a vector of zero length.

We saw from the test report that if an array is accessed outside its defined range a
java.lang.ArrayIndexOut0fBounds exception is thrown. Division by zero
(double) does not raise any exceptions, but sets the result to NaN.

Learning activity

Copy and paste length(), normalise() and dot() methods from VecMaths into a new class,
VecMathException. Alter normalise() so the method throws an ArithmeticException if a division by zero is
attempted. (Consult the API to find out about ArithmeticException and its superclass, RuntimeException.)

Write a test class which catches any arithmetic and array index out of bounds exceptions thrown by
VecMathException.

3.8 Vector maths with exception throwing

package exceptionhandling;
import static java.lang.Math.x*;
public class VecMathException {

private VecMathException() {
}

public static double length(double[] a) {

return sqrt(dot(a, a));

17

Graphical Object-Oriented and Internet Programming in Java — Volume 2

}

public static void normalize (double[] a) throws
ArithmeticException {

double mag = length(a);
if (mag == 0)

throw new ArithmeticException(

"SafeVecMath.java 18: Attempt to divide by zero");

for (int i = 0; i < a.length; i++) {

ali]l = alil / mag;
}

}

public static double dot(double[] a, double[] b) {

int numCpts = a.length;
double result = 0.0;
for (int i = 0; i < numCpts; i++) {

result += al[i] * b[i];
}

return result;

3.9 Catching VecMath exceptions

package exceptionhandling;

import static java.lang.System.out;
import static java.lang.String.format;

import static exceptionhandling.VecMathException.x*;
public class VecMathExceptionTest {

public static String vecFormat(String formatStr, double[] a) {

String s = "(";
for (int i = 0; i < a.length - 1; i++) {
s += format (formatStr, ali]) + ", ";
}
s += format (formatStr, ala.length - 1]) + ")";

return s;

}
public static void main(String[] args) {

// format String
String formatStr = "J.4f";

// dot product with different size vectors
try {
double[] a = new double[] { 1, 1, 0 };
double[] b = new double[] { 1, 1 };
out.println("a.b = " + format(formatStr, dot(a, b)));
} catch (ArrayIndexOutOfBoundsException e) {
out.println(e);

18

Safe vector maths

}

// normalise a zero vector?
try {

double[] ¢ = { 0, 0, 0 };

normalize (c) ;

out.println("c hat = " + vecFormat(formatStr, c));
} catch (ArithmeticException e) {

out.println(e);

In fact the exception handling mechanism is rather clumsy for this example.
VecMath throws only runtime exceptions, which are unchecked by the compiler;
hence the programmer must remember to include try/catch blocks without helpful
compiler reminders. Furthermore, runtime exceptions are generally used to escape
unknowable problems. It is far better to handle internal errors with code (i.e. not
exception throwing) which corrects program logic.

For example we might decide that an attempt to normalise a zero vector should not
alter the vector in any way and attempts to dot product unequal length arrays result
in a returned NaN.

Learning activity

Write a new class, SafeVecMath, with length(), dot() and normalise() methods which check for unequally
sized arrays and zero-length vectors. Write a test class to show what happens if a client calls dot and
normalise carelessly. Also demonstrate how to write safe client code for calls to these methods.

3.10 Safe vector maths

package exceptionhandling;
import static java.lang.Math.x*;
public class SafeVecMath {

private SafeVecMath() {
}

public static double length(double[] a) {

return sqrt(dot(a, a));
}

public static void normalize (double[] a) {
double mag

if (mag == 0)
return;

length(a);

for (int i = 0; i < a.length; i++) {
ali] = ali] / mag;

19

Graphical Object-Oriented and Internet Programming in Java — Volume 2

}
public static double dot(double[] a, double[] b) {

int numCpts = a.length;
if (b.length != numCpts)
return Double.NalN;

double result = 0.0;

for (int i = 0; i < numCpts; i++) {
result += al[i]l * b[il;

}

return result;

3.11 Safe test

package exceptionhandling;

import static java.lang.System.out;
import static java.lang.String.format;

import static exceptionhandling.SafeVecMath.x*;
public class SafeVecMathTest {
public static String vecFormat (String formatStr, doublel[] a)

String s = "(";
for (int i = 0; i < a.length - 1; i++) {
s += format (formatStr, alil) + ", ";
}
s += format (formatStr, ala.length - 1]) + ")";
return s;

}
public static void main(String[] args) {

// format String
String formatStr = "%.4f";

// dot product with different size vectors

double[] a = new double[] { 1, 1, 0 };

double[] b = new double[] { 1, 1 };

out.println("a.b = " + format(formatStr, dot(a, b)));

// normalise a zero vector?

double[] ¢ = { 0, 0, O };

normalize (c) ;

out.println("c hat = " + vecFormat(formatStr, c));

// how to write safe client code

if (a.length != b.length) {
out.println("unequal sized vectors");
} else {

20

Learning outcomes

if (dot(a, b) == 0) {
// carry on...
}
}
if (length(c) == 0) {
out.println("zero length vector");
} else {

normalize (c) ;
// carry on...

}

SafeVecMathTest shows how the good programmer should prepare for runtime
exceptions due to coding errors by what might be termed ‘defensive programming’.

In Volume I we saw a situation where we just had to catch an exception; this was the
checked InterruptedException, thrown by the JVM if the operating system could not
service the request for program execution pause.

Checked exceptions are an important and valuable aspect of internet Java and we
shall be using them often in the remainder of this volume.

3.12 Learning outcomes

By the end of this chapter, the relevant reading and activities, you should be able to:

m explain why it is important to write safe code

» understand when it might not be possible to write safe code, and the
implications of this

m describe how a method can throw an exception object if something goes wrong
at runtime

m understand how all exceptions subclass java.lang.Exception

m understand that the compiler does not check that possible runtime exceptions
are handled in code

m understand that the compiler does care about checked exceptions, and insists
that they are declared or wrapped in a try/catch block

m describe how a method throws an exception with the keyword throw followed
by a new exceptions object

» understand that if your code calls a checked exception throwing method, you
must either duck the exception or enclose the call in a try/catch block.

21

