
Graphical object-oriented and

internet programming in Java

Volume 1

T. Blackwell

CO2220

2009

Undergraduate study in
Computing and related programmes

This is an extract from a subject guide for an undergraduate course offered as part of the

University of London International Programmes in Computing. Materials for these programmes

are developed by academics at Goldsmiths.

For more information, see: www.londoninternational.ac.uk

This guide was prepared for the University of London International Programmes by:

Tim Blackwell

This guide was produced by:

Sarah Rauchas, Department of Computing, Goldsmiths, University of London.

This is one of a series of subject guides published by the University. We regret that due to pressure of work the author is

unable to enter into any correspondence relating to, or arising from, the guide. If you have any comments on this subject

guide, favourable or unfavourable, please use the form at the back of this guide.

University of London International Programmes

Publications Office

32 Russell Square

London WC1B 5DN

United Kingdom

www.londoninternational.ac.uk

Published by: University of London

© University of London 2009

The University of London asserts copyright over all material in this subject guide except where otherwise indicated. All rights

reserved. No part of this work may be reproduced in any form, or by any means, without permission in writing from the

publisher. We make every effort to respect copyright. If you think we have inadvertently used your copyright material, please

let us know.

Contents

Preface . v
Introduction . v
Aims . v
Objectives . v
Learning outcomes . v
Assessment . vi
How to use this subject guide . vi
Reading . viii
Notation . viii
Before you do anything else . viii

1 Java without objects 1
1.1 Introduction . 1
1.2 Java Machines . 1
1.3 Syntax . 2
1.4 Program flow . 3
1.5 The JVM and the Compiler . 4
1.6 Summary . 4
1.7 Programming . 5
1.8 Eliza . 6
1.9 Learning outcomes . 8

2 Objects 9
2.1 Introduction . 9
2.2 A first encounter with inheritance 9
2.3 Classes and their objects . 10
2.4 A simple Java application . 10
2.5 The garbage collectible heap . 11
2.6 Summary . 11
2.7 Programming . 11
2.8 SimpleDrop . 13
2.9 GooDrop . 15
2.10 GooDrop application . 17
2.11 Drop . 18
2.12 RedDrop . 19
2.13 WobblyDrop . 21
2.14 Learning outcomes . 21

3 Object programming 23
3.1 Introduction . 23
3.2 Learning outcomes . 25

4 Reference types 27
4.1 Introduction . 27
4.2 Primitive Type . 27
4.3 Reference Types . 29
4.4 Life on the garbage-collectible heap 31
4.5 Object arrays . 32

i

Graphical Object-Oriented and Internet Programming in Java – Volume 1

4.6 Remote controlling an object . 32
4.7 Summary . 32
4.8 Programming . 33
4.9 GooDrops . 33
4.10 Drop in Colour . 35
4.11 GooDrops in Colour . 36
4.12 Learning outcomes . 37

5 Object behaviour 39
5.1 Introduction . 39
5.2 Methods and instance variables . 39
5.3 Encapsulation . 40
5.4 Local and instance variables . 41
5.5 Comparing variables . 41
5.6 Summary . 41
5.7 Programming . 42
5.8 Ellipse . 43
5.9 Hoop . 45
5.10 Hoop App . 46
5.11 Moving Hoop . 47
5.12 Moving Hoop App . 48
5.13 Learning outcomes . 50

6 Program development 51
6.1 Introduction . 51
6.2 Design, then implement . 51
6.3 Additional features of the JPL . 51
6.4 Summary . 52
6.5 Programming . 52
6.6 Goo By Starlight . 52
6.7 Pseudo Sky . 54
6.8 Sky . 55
6.9 Star . 56
6.10 Moon . 57
6.11 GooStar . 58
6.12 GooMoon . 58
6.13 Goo by starlight . 60
6.14 Learning outcomes . 61

7 The Java library 63
7.1 Introduction . 63
7.2 Using the API . 63
7.3 The ArrayList . 63
7.4 Boolean expressions . 64
7.5 Packages and imports . 64
7.6 Summary . 64
7.7 Programming . 65
7.8 Simple Mouse and Keyboard interaction 65
7.9 Moving lines and points . 67
7.10 Point . 69
7.11 Learning outcomes . 71

8 Inheritance 73
8.1 Introduction . 73
8.2 Understanding inheritance . 73

ii

8.3 Designing inheritance . 73
8.4 Advantages and disadvantages of inheritance 74

8.4.1 Advantages of inheritance . 74
8.4.2 Disadvantages of inheritance 74

8.5 Rules for overriding and overloading 75
8.6 Summary . 75
8.7 Programming . 75
8.8 Design . 79
8.9 Shape . 80
8.10 Polygon . 81
8.11 Shape application . 82
8.12 Polygon application . 83
8.13 CurvyShape . 84
8.14 CurvyShapeApp . 86
8.15 MovingPolygon . 87
8.16 MovingPolygonApp . 88
8.17 Moving Curvy Shape . 90
8.18 Moving Curvy Shape App . 91
8.19 Learning outcomes . 93

9 Abstraction 95
9.1 Introduction . 95
9.2 Abstract Classes . 95
9.3 Abstract Methods . 96
9.4 A class called Object . 97
9.5 Changing the contract . 98
9.6 The Interface . 98
9.7 Invoking a superclass method . 99
9.8 Summary . 99
9.9 Programming . 100
9.10 Implementing the Shape class diagram 103
9.11 Drawable and Moveable . 104
9.12 Shape . 104
9.13 Polygon . 105
9.14 Message . 106
9.15 Moving Polygon . 106
9.16 Shape and Message application . 107
9.17 Learning outcomes . 109

10 Object lifetime 111
10.1 Introduction . 111
10.2 The stack and the heap . 111
10.3 Object creation . 112
10.4 Superclass constructors . 112
10.5 this() . 113
10.6 Object lifespan . 113
10.7 Summary . 113
10.8 Learning outcomes . 114

11 Events 115
11.1 Introduction . 115
11.2 Putting a widget on a window . 115
11.3 Event handling . 116
11.4 A simple layout manager . 116
11.5 Action events from more than one source 116

iii

Graphical Object-Oriented and Internet Programming in Java – Volume 1

11.6 Summary . 117
11.7 Programming . 117
11.8 Skeleton GooComponent . 118
11.9 GooComponent . 119
11.10 GooEvent . 121
11.11 GooButton . 122
11.12 GooSlider . 123
11.13 Controlled Goo Drop . 126
11.14 Goo Drops with Controls . 127
11.15 Controlled GooDrops App . 128
11.16 Learning outcomes . 129

12 Graphics 131
12.1 Introduction . 131
12.2 Animations . 131
12.3 Summary . 132
12.4 Programming . 133
12.5 GooPanel . 133
12.6 Drawing . 134
12.7 GooDrawing . 136
12.8 GooDrawingApp . 137
12.9 Simple Animation . 138
12.10 SimpleGoo . 139
12.11 SimpleGooApp . 140
12.12 Refined SimpleGoo . 141
12.13 Part I Summary . 144
12.14 Learning outcomes . 144

13 Revision 145
13.1 Overview . 145

13.1.1 Java without objects . 145
13.1.2 Objects . 145
13.1.3 Reference types . 146
13.1.4 Object behaviour . 147
13.1.5 Program development . 147
13.1.6 The Java library . 148
13.1.7 Inheritance . 149
13.1.8 Abstraction . 149
13.1.9 Object lifetime . 150
13.1.10 Events . 151
13.1.11 Graphics . 152

13.2 Sample examination questions, answers and appendices 153

iv

Preface

Introduction

The course is split into two parts, with a separate volume for each part.

Part I covers object-oriented programming in Java, graphical user interfaces and
event-driven systems.

Part II is concerned with the principles of client-server computing, techniques of
interconnectivity in Java and interactive web-based computing systems.

Volume 1, which is this volume, covers the first part of the course. Volume 2 covers
Part II of the course.

Aims

The course aims to give students an insight into the object-oriented approach to the
design and implementation of software systems. The course also considers specific
features of the programming language Java, with particular reference to graphical
interfaces and event driven applications.

The second part of the course is intended to give students the necessary background
to understand the technical software aspects of how computers communicate across
the Internet. Students will be introduced to the underlying principles of client-server
computing systems and will gain the required conceptual understanding, knowledge
and skills to enable them to produce simple web-based computing systems in Java.

Objectives

1. To re-enforce students’ knowledge of object-oriented programming in Java. (Part
I)

2. To introduce students to the notion of graphical user interfaces. (Part I)

3. To introduce students to the notion of event-driven systems. (Part I)

4. To teach students the principles of client-server computing. (Part II)

5. To introduce the main techniques for interconnectivity in Java. (Part II)

6. To produce students who are able to develop rudimentary interactive web-based
computing systems. (Part II)

Learning outcomes

On completion of this course students should be able to:

v

Graphical Object-Oriented and Internet Programming in Java – Volume 1

1. Analyse and represent problems in the object-oriented programming paradigm.
(Part I)

2. Design and implement object-oriented software systems. (Part I)

3. Build an event-driven graphical user interface. (Part I)

4. Explain the main principles for client-server programming. (Part II)

5. Design and implement a rudimentary client side system. (Part II)

6. Design and implement a rudimentary server-side system. (Part II)

7. Integrate their knowledge and skills to produce a rudimentary web-based
application. (Part II)

Assessment

Coursework contributes 20 per cent of the final mark on the complete unit. An
unseen examination paper will contribute 80 per cent of the final mark.

Important note. The information given above is based on the examination structure
used at the time this guide was written. Please note that subject guides may be used
for several years. Because of this we strongly advise you to always check the current
Regulations for relevant information about the examination. You should also
carefully check the rubric/instructions on the paper you actually sit and follow those
instructions.

How to use this subject guide

This subject guide is not a self-contained account, but is a companion to the course
text Head First Java 2nd edition (HFJ) by Kathy Sierra and Bert Bates. It is essential
that you obtain this book.

There are a number of other books, listed in the section below called Reading,
which expand on a number of topics and you are advised to deepen your
understanding by referring to these additional texts where directed.

There are thirteen chapters in this volume. Most chapters are in two parts. The first
part is based on a number of readings from HFJ. The second part is devoted to
programming. Here you will find programming examples and activities based on the
material covered in the first part of the chapter. Just two chapters, Chapter 3 Object
programming and Chapter 10 Object lifetime, are mainly concerned with conceptual
and/or descriptive information, and consequently there is no programming element.

The material in the earlier chapters overlaps with your previous Java course, and
you may find that you proceed quickly. Nevertheless you are advised to study these
chapters carefully.

In short, chapters are comprised of:

readings from HFJ (not Chapter 3), followed by a summary of the key points
from each reading

a bulleted chapter summary

programming (not Chapters 3 and 10)

vi

learning outcomes.

It is important that you read HFJ when directed, and then read the commentary to
check that you have understood the main points. The commentaries are not
sufficient in themselves. You must refer to HFJ and you are recommended to engage
with the many interesting activities that the authors suggest. The chapter summaries
collect together the main points. All chapter summaries are reproduced in the
revision chapter. These summaries can be used to ensure that you are on top of the
material, and as a revision guide.

The programming sections are an integral part of the course. Aside from the
program examples, you will find programming activities. You MUST attempt these
activities before reading on. The activities are followed by a programming solution.
Please realise that there is rarely a unique solution to a programming exercise, so do
not feel disheartened if your solution differs from mine. However you should read
my program, and the accompanying commentary, to understand my solution.
Moreover, new material, especially concerning Java graphics, will be found in the
commentaries.

The CD-ROM The accompanying CD-ROM provides all the source code and
compiled programs. Many activities are centred on making a drawing or an
animation. You should run these programs before attempting the activity so that you
can see what to aim for (but do not peek at the code!).

The cd contains the following:

an Index which serves to navigate through the folders

demonstration programs

source and compiled code for all programming examples and exercises

source and compiled code for Goo, a special animation package developed for
this course

the Goo API, which is the reference document for the Goo code

the Java API, which is the reference document for the Java code.

You may wish to develop your programs with an integrated program development
environment (IDE) such as Eclipse. It is beyond the scope of this course to show you
how to use Eclipse but it is well worth investing some time in learning to use this
valuable programming tool yourself. Eclipse can be downloaded for free from
http://www.eclipse.org/. This guide tells you how to write code in a simple
editor and compile and run from the command line. However an IDE such as Eclipse
simplifies many programming tasks and greatly helps with debugging.

At the end of each volume, there is a revision guide that summarises the main
concepts you should have acquired from each chapter, and also gives you some
sample examination papers that can guide some of your study.

vii

Graphical Object-Oriented and Internet Programming in Java – Volume 1

Reading

Essential reading

Head First Java (second edition), Kathy Sierra and Bert Bates (Sebastopol, Calif.: O’Reilly 2005) [ISBN
0596009208 (pbk)].

Recommended reading

Java in a Nutshell, David Flanagan(Sebastopol, Calif.: O’Reilly, 2005) [ISBN 0596007736].
Learning Java, Patrick Niemeyer and Jonathon Knudsen (O’Reilly, 2005).
Effective Java (second edition), Joshua Bloch (Upper Saddle River, NJ; Harlow: Addison Wesley, 2008) [ISBN

0321356683 (pbk)].
Java Network Programming, Elliotte Rusty Harold, (Sebastopol, CA; Farnham: O’Reilly, 2005) [ISBN 0596007213

(pbk)].
Java Cookbook, Ian F. Darwin (O’Reilly Media Inc., 2004) [ISBN 0596007019; 978-05960007010].

Notation

Java keywords, source code, variable names, method names and other
source code are printed in typewriter font. Filenames, directories and the
command line in bold type. Three dots, . . . , denotes omitted source code in a code
excerpt. Concepts and things, where they are distinguishable from their
representative Java names (classes, interfaces, method names . . .), are printed in
normal type.

Before you do anything else

Insert the CD-ROM into your computer, and open and print the Index for reference.
Then open the demo folder, and run the programs therein. Some of my favourites
are GooDrops, GooByStarlight and MovingPolygon.

You might think that the code for these animations is complicated and unreachable.
However you will be writing your first animations within a couple of weeks of
starting this course (in fact in Chapter 2).

This is made possible thanks to an animation package, Goo, that I have been using
with students here at Goldsmiths for the last few years.

Goo is designed to get you started with animations and drawings quickly; the
principles of object programming are illustrated with graphical examples right from
the start.

As you progress through this volume you will learn more and more about Java
graphics until you will reach the point when you can even write your own Goo! In
other words you will know how to develop a tool that enables other developers to
code graphics quickly.

viii

Within a few weeks you will know how to do all this.

Goo’d Luck!

ix

Graphical Object-Oriented and Internet Programming in Java – Volume 1

x

Chapter 1

Java without objects

Essential reading

HFJ Chapter 1.

1.1 Introduction

We begin, not at the beginning, but somewhere in the middle.

You have already spent some time studying the Java programming language and
writing small programs. This course will considerably extend your skills and
knowledge, so that you can write graphical interfaces, animations and link
computers on the Internet.

This chapter looks at some basic features of Java, things that you may already know
in part. The chapter starts by introducing a Java machine: the machine responsible
for interpreting Java bytecode into machine instructions. The Java machine accepts
syntactically correct programs; so the programmer has to understand what is legal
Java. The syntax of the Java language is therefore briefly explained. Although not
necessary for programming, putting names to parts of the language will help us to
talk about concepts further on in the course, and will reveal how the language is put
together. You will also find out about procedural programming and three features of
an alternative paradigm, the object oriented approach.

1.2 Java Machines

Reading: pp. 1–3 of HFJ.

If we had a Java Actual Machine then we could talk directly to the machine using
the Java language. No-one, however, intends to build such a complicated thing. In
common with all high level languages, source code, which consists of a sequence of
statements in that language, must first be translated into the machine language of
your computer.

Java source code is compiled and saved in a class file by running the javac
command from the command line. This class file is made up of Java bytecode, the
language the Java Virtual Machine (JVM) understands. A virtual machine is a
program, written in the native language of the computer, which emulates a higher
level machine. The JVM, which is invoked by the java command, sucks in the class
file as input and interprets the bytecode into machine instructions. The instructions
are executed one by one. Different machines will have different JVMs, but all JVMs

1

Graphical Object-Oriented and Internet Programming in Java – Volume 1

read the same language. As long as a particular platform/operating system
(e.g.Windows, Mac OS X, Linux) has a JVM, the class file will run. This is the sense
in which Java is platform independent.

You will be learning how the JVM runs your code as you progress through this
subject guide. An understanding of the JVM is important for successful Java
programming.

1.3 Syntax

Reading: pp. 4–10 of HFJ.

The source file has one class definition. A class consists of methods and variables.
A method is a list of instructions or statements and can be thought of as a function
or a procedure, or as a behaviour. The statements must be enclosed by curly braces.

The JVM first searches for a main method in the class that you have specified at the
command line. main will call other methods, and these might call methods again.
You can think of each statement as an instruction to the JVM. (In fact the JVM may
convert your statement into many machine instructions.)

Classes are grouped into packages. The complete structural hierarchy of a Java
program is therefore:
packages→ classes→ methods→ statements.

Methods are made from a sequence of statements, each ending with a semi-colon.
That’s how the JVM separates out our code. We can think of a statement as a single
command that is executed by the JVM. Statements themselves are made from
expressions and an expression is a combination of operators, literals and variables.

A variable has a name and a type. Types are a very important programming concept.
For example, when the bit sequence 0100 0001 enters a register in the CPU, what
does it represent? Is it the character ‘A’ or the integer number 65? One of the jobs of
the Java compiler is to check our statements for type correctness. Type hugely
reduces programming blunders.

A literal (also known as a constant) is a primitive value (a number or a character or
a Boolean value) or a String or null.

Primary expressions are literals or variables. The JVM evaluates a primary
expression, returning the value of the literal, or the value of the variable. Primary
expressions can be combined into larger, more complex, expressions by using
operators. Subexpressions (i.e. parts of complex expressions) are evaluated in order
by the JVM, and at each evaluation the value is available for the next subexpression.

For example, x and 17 are primary expressions and x * 17 is an expression. Two
primary expressions have been combined by the multiplicative operator *. Most
operators associate from left to right i.e. the expression a * b / 5 is equivalent to
(a * b) / 5. Operators also have an order of precedence. For example,
multiplication has a higher precedence than addition so that a + b * 5 is evaluated
by the JVM as a + (b * 5). Parentheses can force an order of evaluation, or can
ensure that the right order is carried out if we are uncertain of the rules. The rules of
precedence and associativity are given in large tables; see Chapter 1 of Java in a
Nutshell for example.

2

Program flow

The effect of the assignment expression x = 3 is to place the value ‘3’ in the memory
location ‘x’. The assignment statement int x = 3; declares that the variable with
name x stores integer values i.e. the type of x is int.

It is important to realise that sub-expressions ‘return’ a value. It’s rather like jotting
down an intermediate calculation on a sheet of rough working. So a strange
statement like a = b = 5;, which means a = (b = 5) because = associates from
right to left, is equivalent to a = (value of sub-expression) where the value of
the sub-expression is 5 (i.e. b is set to 5 and the value 5 is returned).

1.4 Program flow

Reading: pp. 11–17 of HFJ.

A computer excels at doing very simple calculations very quickly. A program is
therefore a very large number of simple steps. Each step is processed in order as the
machine works its way through the program. It might seem, therefore, that a huge
number of statements are needed before the machine can do anything useful.
Luckily, many tasks can be subdivided into smaller units which can be repeated and
written in a few lines. These are loops. For example,

set i to 1
loop 100 times:

print i
add one to i

end

does the same work as 100 consecutive statements

print 1
print 2
.
.
.
print 100

These two programs excerpts are written in pseudocode, an informal textual
description of a programming task.

Like all machines, and unlike people, a computer infallibly performs simple,
repetitive tasks. It does this by looping through a code block. In order to loop, the
code must be able to tell the machine to jump back to the beginning of the block and
it must also be able to test for completion. The while-loop loops as long as the
conditional test is true.

At its simplest, a program is a sequence of instructions, with jumps and branches.

Jumps are handled in two ways in Java. Firstly, there are loop statements – the
while, the do-while and the for. These cause jumps within a method (i.e between
the end and start of the loop statement, and they must be enclosed in a method).
Secondly, program control might jump out of a method and into another. The
jumped-to method will complete and control will pass back to the jumped-from
method, picking up at the next statement.

3

Graphical Object-Oriented and Internet Programming in Java – Volume 1

A program will branch at an if or a switch statement i.e. one of two or more blocks
of code will be executed depending on the outcome of an evaluation.

That’s it: just variables to hold data, expressions and operators to manipulate this
data; ifs and loops to control program flow; and methods, classes and packages to
organise our code. Well, that’s all there is to procedural programming.

There is, however, another way of programming, object orientated programming (or
more simply, object programming), which is what Java is really all about. You can use
Java for procedural programming too and that’s where static methods come in. In
order to understand and appreciate object programming you must understand:

abstract data types

inheritance

dynamic binding.

You will spend some time studying these ideas in the course.

Another aspect of object programming, and this relates to program design rather
than coding, is decentralisation. Programs—and this is especially true of Part II (in
Volume 2) when we look at distributed and networked Java—are actually groups of
objects that perform their computations by sending messages to each other, rather
than to a central module which co-ordinates program activity.

1.5 The JVM and the Compiler

Reading: pp. 18–19 of HFJ.

This fireside chat reveals some important differences between the JVM and the
compiler. Make sure you are clear in your own mind on the role each plays in Java
development.

1.6 Summary

Source code, compiled code and the JVM.

Statements terminate with a semicolon (;).

Code blocks are defined by a pair of curly braces.

Assignment operator =.

Equals operator ==.

A while loop runs through its block as long as the conditional test is true.

Execution passes to the code immediately after the loop block if the conditional
test is false.

Conditional branching is handled using if and if/else.

String arrays.

4

Programming

1.7 Programming

The original Eliza is a computer psychotherapist. You can find out about Eliza and its
variants by googling “Eliza computer therapist”. A session between Eliza and a client
may run something like this:

C: I am feeling sad
E: This is a common problem
C: Maybe, but that’s not helping
E: Have you always felt this way?
C: No
E: Have you felt this way for long?
C: No, just recently
E: Please continue
C: It started about two months ago
E: Don’t worry you will start to feel better soon.
C: Oh
E: That will be 100 pounds. Goodbye.

Learning activity

Write a procedural Eliza program based on the example dialogue above.

You will need to know how to set up a package-source code file structure, and how to compile and run
programs from the command line, even if you are using an IDE such as Eclipse.

Source files of Java classes must be saved in files with the same name as the class name, followed by the
extension .java. These files must be placed in a directory with the same name as the declared package.
Follow this procedure and adapt it for all your programming on this course:

1. Make a directory named ‘simplejava’ and place it, for example, in your ‘Computing220’ directory, or
wherever you wish to keep your programs.

2. Open a text editor and type the code for Eliza. Save this file as Eliza.java in
Computing220/simplejava.

3. Open a terminal (command-line prompt) in Computing220.

4. Type javac simplejava/Eliza.java to compile your program. Check to make sure Eliza.class has been
created.

5. Run the program by typing java simplejava/Eliza

5

Graphical Object-Oriented and Internet Programming in Java – Volume 1

1.8 Eliza

package simplejava; // A

import java.util.Scanner; // B

public class Eliza {

public static void main(String[] args) { // C

Scanner scanner = new Scanner(System.in); // D

String[] lines = { "Why do you feel that way?", // E
"Have you felt this way for long?",
"Have you always felt like this?",
"Do you think that other people feel like this too?",
"This is a common problem",
"Please continue"
};

System.out.println("Hello!"); // F

int i = 0; // G
while(i < 10){ // H

scanner.nextLine(); // I
int randomInt = (int)(Math.random() * lines.length); // J
System.out.println(lines[randomInt]); // K

i = i + 1; // L
}
System.out.println("That will be 100. Goodbye"); // M
}
}

Our Eliza is not very intelligent, but she does illustrate the procedural style of
programming.

All programs, including those that you write, should be commented. Comments help
a reader – and the writer at a later date – understand what the program does, and
why. Normally comments are written directly in the program; however since there is
rather more to say about the code than usual, the comments follow below.

A. Java classes are grouped together in packages. The source files must be saved in a
directory of the same name.

B. The Java system includes a vast library of useful classes. The compiler needs to
find all the class files used by the program. This line tells the compiler that this class
will refer to the Scanner class, which is in a package called java.util

C. The main method is the point of entry for all Java programs. This method has a
complicated signature, containing the modifiers public and static and the return
type void.

6

Eliza

void declares the return type of main to the compiler. The return type must be a
single value – for example the final number of a calculation. This number is
‘returned’ to the calling method. We shall see exactly what this means shortly. For
now, note that main does not return anything to the calling program, and this is
denoted by the keyword void. Methods must declare a return type, even if nothing
is returned! (One exception is the constructor, which is a special type of method
invoked by the use of new, which must never be declared with any return type, not
even void.)

public and static are modifiers. One of the modifiers – in this case public –
specifies the visibility of the method. The visibility of a method defines access to the
method from other classes. public gives unrestricted access. The modifier static
tells us that this method is a class method. If static is omitted, the method is an
instance method. We shall see what these mean in due course.

main is the method name, and main’s parameter list is enclosed in parentheses.
The caller for main is actually the JVM.

D. The new keyword tells the JVM to construct a Scanner object in memory. This
object is referenced by the variable scanner. What exactly this means will only
become evident as the course progresses, but for now regard the scanner variable as
a ‘remote control’ on the Scanner object.

E. An array of Strings is populated with a few phrases.

F. The standard Java idiom for printing to the command line. System.out is a
variable of java.lang.System (this class does not need to be declared in a package
statement; the java.lang package is so fundamental that the compiler always
imports this for you).

G. An integer variable is declared and initialised to one. This variable will serve as a
counter in the while loop.

H. The while loop. The expression in parentheses is evaluated at the start of each
iteration through the loop’s block. If the boolean value of the expression is true
then the loop continues; otherwise the JVM skips to the first statement after the
while’s closing brace, if there is one.

I. Ask the scanner object to read a line typed at the terminal. It’s rather like pointing
the remote control at the scanner object and pressing the nextLine button.

J. Generate a random index into the lines array. The call to Math.random()
produces a ‘random’ number between zero and just less than one. The (int)
operation converts a double value to an integer value, by cutting off the decimal
places. This is an example of what java calls a cast.

K. Print the random line.

L. increment the loop counter by one.

M. The loop terminates when i reaches the value 9 (i.e. 10 iterations in total) and
Eliza bids you goodbye.

7

Graphical Object-Oriented and Internet Programming in Java – Volume 1

1.9 Learning outcomes

By the end of this chapter, the relevant reading and activities, you should be able to:

understand the meaning of the following special terms: source code, Java Virtual
Machine (JVM), bytecode, class definition, method, variable, statement, expression,
operator, literal, variable name, variable type, primitive value, literal, association
and precedence, loops, jumps, branches, pseudocode, procedural programming

be able to write a simple procedural Java program contained in main and using
the language constructs you met in Chapter 1

set up a package structure for your Java projects and compile and run java
programs from the command line.

8

Chapter 2

Objects

Essential reading

HFJ Chapter 2.

2.1 Introduction

Object programming is is not just programming with objects. The so-called object
oriented (OO) approach to program design uses some special features of the
language. Object programming is a paradigm, and we begin our explanation in this
chapter.

2.2 A first encounter with inheritance

Reading: pp. 27–33 of HFJ.

Subclasses are more specific versions of their more abstract superclass. What is a
shape? Is it a triangle, or a square, or a circle? Have you ever seen a pure shape?
Shape abstracts the common behaviour of actual shapes such as circles and squares;
in this case rotate and playSound. Object programmers say that subclasses inherit
the attributes and behaviour of their superclass. If a circle object is asked to rotate
itself, the rotate method in Shape is called. This same method is also called if a
square is asked to rotate.

However an amoeba has rather different behaviour. An Amoeba object has its own
rotate and playSound methods. The Amoeba class overrides these two superclass
methods.

Let’s consider another example. Suppose we are asked to produce an animation of
some falling drops. Some drops fall quickly; some are grey and some are red.

One way forward would be to write separate classes for Drop, RedDrop and
GreyDrop code move() and draw methods for each class. However drops,
irrespective of their colour, move in a similar way, and we would have identical code
in several class definitions.

Later we may add different kinds of drops to our animation. These new drops have a
similar appearance to standard drops, but they move differently (for example they
wobble from side to side as they fall). After a while we notice that many classes have
identical draw methods and many other classes have identical move methods. This
makes code update very tedious and error prone. Suppose we wish at a later stage to

9

Graphical Object-Oriented and Internet Programming in Java – Volume 1

add code to draw in order to make the image appear smoother: we would need to
hunt through each class and change every draw method. This is not an object
solution.

What we need is to hold all the common code in one place, so that changes can be
made to one code block only. And this is where the power of object programming
really comes in.

2.3 Classes and their objects

Reading: pp. 34–37 of HFJ.

An object has state; this is what it knows about itself. In other words, state is the
current value of the properties of the object. Properties are coded as instance
variables. For a drop we might have:

Drop
Properties Instance variables
position xpos, ypos
velocity xvel, yvel

size size

An object can also do things. It has behaviour–instance methods. Continuing with
the drop example:

Drop
Behaviour Instance methods
movement move()
appearance draw()

Putting the two tables together into one gives the following class design:

Drop
int xpos
int ypos
int xvel
int size
draw()
move()

(This representation of a class as a class box will be familiar to you from your study
of UML in CIS226.)

The class, when compiled, tells the JVM how to make objects, what state these
objects have, and what messages (methods calls) they respond to. The class serves
as a design blueprint. There is only one Drop class, but potentially hundreds of Drop
objects.

2.4 A simple Java application

Reading: pp. 38–40 of HFJ, omit Java takes out the garbage for now.

10

Programming

This application has three classes; a game class, a player class, and a game launcher.
The game launcher is a very simple class with just one method, a main. The launcher
makes a game object (‘instantiates’ i.e. makes an instance of the class), which in
turn makes three player objects. Notice how the application, when launched, consists
of four objects and the game itself is enacted by the objects in communication.

2.5 The garbage collectible heap

Reading: pg. 40 of HFJ, Java takes out the garbage.
Reading: pg. 41 of HFJ.

Objects are created in a section of memory known as the (garbage-collectible) heap,
or heap for short. The JVM allocates exactly enough space on the heap to store the
object. Later, if the object is no longer used by the program (the object is ‘garbage’),
the JVM reclaims this storage and liberates memory for new objects. The JVM
automatically maintains memory, unlike the situation in some languages where the
programmer has to proactively allocate and de-allocate storage space. This
important topic is covered in Chapter 10 of the subject guide.

2.6 Summary

Class boxes show instance variables and methods.

Object programming lets you extend a program without having to touch
previously-tested code.

All Java code is defined in a class.

A class describes how to make an object of that class time. A class is like a
blueprint.

An object knows about things and does things.

Things an object knows are called instance variables. They represent the state of
that object.

Things an object does are called methods. They represent the behaviour of an
object.

When you create a class, you may also wish to create a separate test class which
you’ll use to create objects of your new class type.

main can be used as a launcher for your application, and as a class tester.

A class can inherit instance variables and methods from a more abstract
superclass.

At runtime a Java program is nothing more than objects ‘talking’ to other objects.

Objects are placed on the garbage-collectible heap; the garbage collector clears
objects away from the heap when they are no longer needed by the program.

2.7 Programming

You will now implement the drops application, and in doing so take your first look at
Java graphics. This is a big and complicated subject, so I have made life easier for

11

Graphical Object-Oriented and Internet Programming in Java – Volume 1

you by supplying a drawing and animation package, Goo. This package contains
some of the more difficult graphics code; later you will learn how to write such a
package from scratch.

Hold on tight: very soon you will be creating your own drawings and animations!

Learning activity

Write a SimpleDrop class based on the design box:

SimpleDrop
int xpos
int ypos
int xvel
int yvel
int size
draw()
move()

Make a simpleobjects directory alongside your simplejava directory and save SimpleDrop as
CIS220/simpleobjects/Box.java. You will not yet be able to add code to draw() so that the drop is drawn
to the window, but try and write code so that a call to move() causes the drop to fall by an amount that is
determined by the velocity.

Open the command line in CIS220 and compile SimpleDrop:

javac simpleobjects/SimpleDrop.java.

Correct any errors.

12

SimpleDrop

2.8 SimpleDrop

package simpleobjects; // A

import java.awt.Color; // B

import java.awt.Graphics;

public class SimpleDrop {

int xpos , ypos , xvel , yvel , size; // C

public SimpleDrop(int x, int y, int vx, int vy, int sz){ // D

xpos = x;

ypos = y;

xvel = vx;

yvel = vy;

size = sz;

}

public void move(int width , int height){ // E

xpos = xpos + xvel;

ypos = ypos + yvel;

}

public void draw(Graphics g){ // F

g.setColor(Color.GRAY);

g.fillOval(xpos , ypos , size , size);

}

}

A. This class is declared as a member of simpleobjects.

B. Two classes are imported from java.awt. This is one of the two fundamental
graphics packages (the other is javax.swing).

C. There are five instance variables that specify the state of each instance of this
class.

D. Every class must have a constructor (some have several constructors). The
constructor tells the JVM how to make the actual object. Constructors have the
same name as the class; they are like methods in the sense that they receive
values, but, unlike methods, they do not return any value. SimpleDrop’s
constructor receives five values which are known locally as x, y, vx, vy and
size.

Classes can be considered as blueprints for objects. In this case the JVM builds an
instance of the class by making a SimpleDrop object. It does this by setting aside
some memory space in RAM and creating five integer instance variables, xpos,
ypos, xvel, yvel and size, each initialised to the values of the method
parameters x, y, xv, yv, sz.

E. A straightforward implementation of move. Every time move is called, xpos and
ypos are updated by adding the x and y velocities. The width and height of the
drawing window are passed as parameters, although they are not used in this
implementation.

13

Graphical Object-Oriented and Internet Programming in Java – Volume 1

F. The draw method. There is a single parameter in the method argument, a
java.awt.Graphics reference variable, g. Methods can be called on the
Graphics object, kindly supplied by the JVM, by using the dot operator on the
graphics variable. The Java graphics system calls your draw and performs the
actions that you specify.

In this case a message setColor is sent to the graphics object. The argument of
setColor is a variable known as Color.GRAY (known to the system, but not
defined in your class).

fillOval draws an oval. The method call sends the values of four variables. You
can find out what to send fillOval by referring to the Java API (on the
CD-ROM, or download from http://java.sun.com) for the Graphics class.

We find this information:

fillOval

public abstract void fillOval(int x,
int y,
int width,
int height)

Fills an oval bounded by the specified rectangle with the current color.

Parameters:
x - the x coordinate of the upper left corner of the oval to be filled.
y - the y coordinate of the upper left corner of the oval to be filled.
width - the width of the oval to be filled.
height - the height of the oval to be filled.

You should also look up java.awt.Color to see what other colours are available.

Learning activity

Copy the goo package from the CD-ROM and paste in your CIS220 directory alongside the simplejava
and simpleobjects directories.

Study the next program, GooDrop, and type it into an editor. Save in simpleobjects and compile.

14

GooDrop

2.9 GooDrop

package simpleobjects;

import goo.Goo; // A

import java.awt.Graphics;

public class GooDrop extends Goo { // B

SimpleDrop drop;

public GooDrop(int width , int height) { // C

super(width , height);

int xpos = width / 2;

int ypos = 0;

int xvel = 0;

int yvel = 1;

int size = 10;

drop = new SimpleDrop(xpos , ypos , xvel , yvel , size);

}

public void draw(Graphics g) { // D

drop.move(getWidth (), getHeight ());

drop.draw(g);

}

}

A. goo.Goo is not in the Java library; it’s in your library! The compiler will search for
your own library classes in any directories that lie below the current directory (i.e.
where the compiler is launched). It should find Goo, if you have pasted goo in the
correct place.

B. GooDrop is declared as a subclass of Goo with the extends keyword. Goo is an
animation program. A Goo object sets up a window and then calls its own draw
method at a fixed number of times per second (the frame rate). However, GooDrop
overrides Goo’s draw, and the JVM executes the code in GooDrop’s draw instead.

C. The constructor. The first line calls the superclass constructor and makes a Goo
object. This uses the special super syntax. Don’t worry about this now, we’ll have
more to say on this topic later on. However what you do need to know is that width
and height are the dimensions of the drawing window. The Goo object does the
hard work of setting up a window of that size.The final line of the constructor block
creates a SimpleDrop and points the instance variable drop at the new SimpleDrop
object.

D. The overridden draw method. This method is called (for example) 50 times per
second. The method parameter g is a reference to a Graphics object. This object has
already been created by the Java graphics system, and it contains all the state and
behaviour needed to perform actual rendering (i.e. drawing). In other words your
program can instigate drawing by sending messages to the Graphics object. You do
this by calling methods with the dot operator on g. GooDrop’s draw relays the

15

Graphical Object-Oriented and Internet Programming in Java – Volume 1

message to the SimpleDrop object. The Graphics reference is passed as a parameter
to the SimpleDrop’s draw.

Notice that the height and width of the window are obtained by calling getWidth
and getHeight. These methods are not defined in GooDrop so the compiler looks for
definitions in the superclass, Goo. Goo is able to determine the width and height
dynamically i.e. even if the window has been resized. Window width and height
might have been stored as instance variables in GooDrop and used by move, but
window resizing would not then be taken into account.

Learning activity

Write an application (this is what HFJ calls a launcher) class, GooDropApp which makes a GooDrop
object of width 800 and height 500 pixels. The animation can be stated by calling go on your GooDrop
object.

Open the command line in CIS220, compile GooDropApp and run by typing java
simpleobjects/GooDropLauncher.

16

GooDrop application

2.10 GooDrop application

package simpleobjects;

public class GooDropApp {

public static void main(String [] args) {

int width = 800;

int height = 500;

GooDrop gd = new GooDrop(width , height);

gd.smooth ();

gd.go();

}

}

The application code is quite simple; a GooDrop variable gd is initialised to point to a
new GooDrop object. Two methods are then called on gd, smooth and go. GooDrop
does not define these methods; the JVM passes on the call to the superclass Goo
object. You will find definitions for these methods in Goo.java.

(You are not expected to have known about smooth. This call tells the Java graphics
to apply an anti-aliasing algorithm so that slanting straight lines appear less jagged.)

go starts the animation. The Goo object enters an eternal loop; the call never returns
and main never reaches its closing right brace. draw is called many times a second.
At each call, the drop is drawn at a slightly different position, giving an impression
of movement.

Learning activity

One drawback of SimpleDrop is that the drop disappears from the bottom of the drawing window. Add
code to SimpleDrop so that the drop reappears at the top of the window and save your edited code as
Drop.java. Remember to change the class name to Drop. Modify GooDrop so that your animation
runs with Drop rather than SimpleDrop.

17

Graphical Object-Oriented and Internet Programming in Java – Volume 1

2.11 Drop

package simpleobjects;

import java.awt.Color;

import java.awt.Graphics;

public class Drop {

int xpos , ypos , xvel , yvel , size;

public Drop(int x, int y, int vx, int vy, int sz){

xpos = x;

ypos = y;

xvel = vx;

yvel = vy;

size = sz;

}

public void move(int width , int height){

xpos = xpos + xvel;

ypos = ypos + yvel;

if (ypos > height) {

ypos = 0;

xpos = (int)(Math.random () * width);

}

}

public void draw(Graphics g){

g.setColor(Color.GRAY);

g.fillOval(xpos , ypos , size , size);

}

}

A conditional block has been added to move. The origin of any computer graphics
co-ordinate system is at the top left of the window or screen, with y increasing
downwards. So the conditional expression ypos > height returns true if the drop
leaves the window. As a consequence the drop is repositioned at a random position
at the top of the window.

Learning activity

Write a subclass, RedDrop extends Drop, which appears red rather than grey.

Modify GooDrop accordingly.

18

RedDrop

2.12 RedDrop

package simpleobjects;

import java.awt.Color;

import java.awt.Graphics;

public class RedDrop extends Drop{

Color color = Color.RED;

public RedDrop(int xpos , int ypos , int xvel , int yvel , int size

){

super(xpos , ypos , xvel , yvel , size);

}

public void draw(Graphics g){

g.setColor(color);

g.fillOval(xpos , ypos , size , size);

}

}

package simpleobjects;

import goo.Goo;

import java.awt.Graphics;

public class GooDrop2 extends Goo {

Drop drop;

public GooDrop2(int width , int height) {

super(width , height);

int xpos = width / 2;

int ypos = 0;

int xvel = 0;

int yvel = 1;

int size = 10;

drop = new RedDrop(xpos , ypos , xvel , yvel , size);

}

public void draw(Graphics g) {

drop.move(getWidth (), getHeight ());

drop.draw(g);

}

}

In this solution, RedDrop has a single instance variable, color, initialised to
Color.RED. RedDrop’s constructor calls the superclass constructor using the super

19

Graphical Object-Oriented and Internet Programming in Java – Volume 1

syntax. We saw a similar call in GooDrop’s constructor. A Drop object is created; you
can imagine this lives ‘inside’ the RedDrop object. The pictures on pp. 250–251 of
HFJ illustrate the general idea.

GooDrop2 shows the modification to GooDrop. A RedDrop object is created, and
assigned to a Drop variable. This is allowed in Java and in fact is a standard
technique of object programming: a superclass variable can point to a subclass
object. This is an example of polymorphism, one of the distinguishing features of
object programming.

Learning activity

Subclass Drop once more to define a drop which wobbles from side to side as it falls.

20

Learning outcomes

2.13 WobblyDrop

package simpleobjects;

public class WobblyDrop extends Drop {

public WobblyDrop(int xpos , int ypos , int xvel , int yvel , int

size) {

super(xpos , ypos , xvel , yvel , size);

}

public void move(int width , int height) {

xpos = xpos + (int)(4 * (Math.random () - 0.5));

ypos = ypos + yvel;

if (ypos > height) {

ypos = 0;

xpos = (int) (Math.random () * width);

}

}

}

This time we override move but not draw. The wobble is performed by generating a
random integer between −2 and 2 and adding this to the x position of the drop.

Learning activity

Write an application that has all three types of drops. The drops could change type when they reappear at
the top of the window.

2.14 Learning outcomes

By the end of this chapter, the relevant reading and activities, you should be able to:

describe the two main Java graphics packages

find out about the classes in these packages by referring to the API

construct a class hierarchy

create an animation or a drawing program by extending Goo

fill ovals

set and change colour.

21

Graphical Object-Oriented and Internet Programming in Java – Volume 1

22

Chapter 3

Object programming

Essential reading

There is no specific reading for this Chapter. Some explanations of the topics contained in this short essay are
scattered around Head First Java (try looking things up in the index). You might also benefit from glancing at a
Software Engineering book such as Roger Pressman’s Software Engineering, published by McGrawHill.

3.1 Introduction

Object Oriented programming is characterised by three distinguishing features:
abstract data types, inheritance and dynamic binding.1 Data hiding and
polymorphism are also closely related to the object approach.

Abstraction, to programmers, means trimming away unnecessary detail. A thing is
represented by only its most significant attributes. In many ways it is like modelling;
an abstraction is frequently a software model of an actual entity. The abstract data
type is a software module that includes data and operations on that data. Java
enables us to define our own ADTs (i.e. classes). The important aspect of an ADT is
that the internal representation of the entity is hidden from the program units (the
clients) that may use it. So GooDrop can ask a Drop to draw itself, and to move, but
it does not need to know how the drawing is made or how the movement is
calculated. Drop is an abstraction; real drops have many attributes determined by
their chemical and physical makeup, but for our purpose we only need to know
position and size. It is an ADT; clients interface with Box objects by calling the
‘visible’ methods, draw and move.

Data hiding. Furthermore the internal representation of the Drop is also irrelevant.
In this case, Drop stores top left corner coordinates and width and height. It could
just as easily store the central coordinates and the lengths of the major and minor
axes of the ellipse. The details of the representation should be hidden from the
clients, so client program units interact with a Drop object only by the declared
interface, namely the public methods. This means that we are free to change the
internal representation of a Drop, and the details of how the methods work, without
requiring all the clients to also change their code.

Inheritance allows a programmer to modify an ADT if a new requirement demands
a slightly different behaviour. Rather than define new top-level ADT’s for each new
requirement (a wobbly drop, a red drop, . . .), descendant classes can inherit the
behaviours of their parent class yet override some details of behaviour where
necessary. This means that code can be re-used, rather than redefined in several
places.

1Sebesta, R., Concepts of Programming Languages. (Addison Wesley, 2009).

23

Graphical Object-Oriented and Internet Programming in Java – Volume 1

Are there any drawbacks to inheritance? One problem is that the class hierarchy
introduces a dependency between program modules. The subclasses depend on their
superclasses for some of their method definitions. This restricts the changes that can
be made to these superclasses. And this dependency in turn makes code difficult to
read.

Polymorphism means having many shapes. In a programming context it means that
an object could appear to have many types. Similarly a variable could, at different
times, reference objects of different types. Consider:

Drop drop = new Drop(200, 200, 0, 10, 10);
RedDrop redDrop = new RedDrop(50, 75, 0, 12, 10);
...
drop = redDrop; \\ drop now points to the RedDrop object
...
drop.move(g);

drop is a polymorphic variable because it references both a Drop and later a
RedDrop. The RedDrop object is polymorphic because it is referenced by a Drop and
also by a RedDrop variable. A RedDrop object might appear in some contexts as a
Drop, and in others as a RedDrop.

Dynamic binding. The compiler performs static type checking, i.e. it checks that
each statement is syntactically correct. drop.move(g) is syntactically correct because
the class of the variable is Drop and Drop does declare and define move(), even
though drop points to a RedDrop object.

The compiler generates code for method calls whenever it can; but this is not
possible when methods can be overridden and the type of the receiving object is not
known at compilation. Instead, the appropriate method is dynamically chosen at
runtime.

In the following code, the compiler cannot know the type of the Drop object referred
to by drop without actually running the program. However, at runtime, the JVM will
decide which draw method to execute based on drop’s class definition, and any
superclasses it may have.

Graphics g;
....
public void draw(Drop drop){

drop.draw(g);
}

24

Learning outcomes

Learning activity

Explain the meaning of the following concepts in your own words:

abstraction

abstract data type

clients of a class

data hiding

inheritance

dynamic binding

polymorphism.

In each case you should provide code excerpts to illustrate your explanation.

3.2 Learning outcomes

By the end of this chapter, the relevant reading and activities, you should have an
understanding of the following concepts:

abstraction

Abstract Data Type

clients of a class

data hiding

inheritance

dynamic binding

polymorphism.

25

Graphical Object-Oriented and Internet Programming in Java – Volume 1

26

Chapter 4

Reference types

Essential reading

HFJ Chapter 3.

4.1 Introduction

Variables have a name, a type and a value. There are two kinds of type: primitive
types and reference types. The values of primitive types are quite easy to understand.
The value of an int variable i, after initialisation by the statement int i = 3; is,
well, 3. But what is the value of drop after initialisation Drop drop = new Drop()?

To help us understand how reference types such as Drop are used in Java, we shall
use a diagrammatic representation of the JVM: a memory diagram. This memory
diagram will help to visualise the connection between a variable and its object, and
will explain some of the strange things that happen when object references are
passed to methods. Memory diagrams will help us to understand inheritance and
other important object techniques.

4.2 Primitive Type

Reading: pp. 49–53 of HFJ.

Figure 4.1 below shows part of your computer’s RAM, with four words (a word is
two bytes) at addresses 1000–1004. You can imagine that the JVM’s portion of RAM
is laid out as a grid.

Symbols are much easier to use (by humans) than raw addresses. The JVM builds a
symbol table, mapping symbols to addresses (which are easier for machines to use).

Symbol Address

...
i 1000
j 1002
...

The command java MyProgram starts the JVM. The JVM asks the Operating System
(OS) for a block of memory. The symbol table, variable values, intermediate values

27

Graphical Object-Oriented and Internet Programming in Java – Volume 1

10000001

00001011

11110000

10001100

1000

1002

1004

1006

Figure 4.1: A portion of RAM showing four consecutive words of memory at addresses 1000,
1002, 1004 and 1006

used in expressions, etc. are all put in this block. The block also contains two other
important sections: the stack (or stacks) and the heap.

We see from Figure 4.1 that the word at memory at address 1000 is 00001011. But
what does the binary number 00001011 mean? By this we mean “what does it
represent”? At a physical level, the number represents a state of some logic gates or
at an electronic level, the state of some circuitry. At a higher (more abstract) level,
the number is a value in a programming language. 00001011 might be an integer
for example.

The representation is specified in a computer language as a type. Type helps us to
program meaningfully. Type is checked by the compiler, and helps us to avoid some
programming mistakes. Type also tells the JVM how to handle the value.

A variable has a name and a type. When a variable is declared, as in:

int luckyNumber;

the JVM sets aside space in memory to hold an integer value and puts i in the
symbol table.

The statement:

int luckyNumber = 11;

declares and initialises a variable. Now the memory address luckyNumber contains
the bit sequence 00001011.

Integers, characters, floats, etc. are primitive types. The value of a primitive type is
just what we would expect. Programming with primitives is very limiting because it
is often useful to bundle data together in an aggregate type. All related data can
then be referred to by a single name (i.e. a single symbol).

28

Reference Types

These aggregates, or objects, are reference types. Objects, though, are rather more
than just data structures. Objects have methods – these tell the JVM how to
manipulate the data.

4.3 Reference Types

Reading: pp. 53–56 of HFJ.

Suppose the variable dogName is a String, declared and initialised in this statement:

String dogName = "Bongo";

"Bongo" is an object, so it looks as if dogName is an object variable, just as
luckyNumber is a primitive variable in the example above. In fact dogName does not
hold the object in the way that luckyNumber holds the primitive value. dogName is a
reference variable. The value of a reference type is the address where the object lives
in memory. The object itself is the word “Bongo”; dogName refers to (points at) this
object.

Let us look at another example:

Box b = new Box();

and the memory diagram for this line of code, which is in Figure 4.2.

Box
object

b

Figure 4.2: Memory diagram showing a reference variable b pointing at a Box object.

The reference is shown on the left in a box, the object on the right as a blob. They
are connected by an arrow to show the relationship ‘b refers to Box’. You can
imagine a grid of memory locations beneath and surrounding the box and the blob;
or you can just regard the diagram as an abstract picture of the memory. In any case,

29

Graphical Object-Oriented and Internet Programming in Java – Volume 1

we shall call this type of diagram a memory diagram. Memory diagrams help us to
explain and understand the workings of objects and references.

The JVM divides the memory into two parts: a place for the stack (or stacks), and
the heap. The heap is an unstructured area of memory. Objects are created on the
heap with just enough space to hold their instance variables, but they do not lie in
any particular position.

Local variables live on the stack. Unlike the heap, the stack is very structured. We
can give an idea of the relationship between the stack and the heap by considering a
memory diagram for this block of code:

public static void main(String[] args) {

// 3 local variables
Box b1 = new Box();
Box b2 = new Box();
Box b3 = new Box();

}

Three local (to main) variables, b1, b2, b3 are declared, three Box objects are
instantiated and the references between variables and objects are set-up. The
memory diagram of the JVM just after the last statement is shown in Figure 4.3.

Box
object

b1

b3

b2

Box
object

Box
object

Stack

Heap

Figure 4.3: Memory diagram showing three Box reference variables and their objects

Local variables – those that are declared within methods – live on the stack.
However, instance variables are declared outside methods. Where do they live? Look
at Figure 4.4.

Instance variables live with their containing object, on the heap.

30

Life on the garbage-collectible heap

width
height
depth
emptyb

Figure 4.4: Instance variables live with their containing object, on the heap

4.4 Life on the garbage-collectible heap

Reading: pp. 57–58 of HFJ.

These sequences of memory diagrams are very helpful when trying to work out the
effect of code blocks such as:

Book b = new Book();
Book c = new Book();
Book d = c;
c = b;

and

Book b = new Book(); // Object 1
Book c = new Book(); // Object 2
b = c;
c = null;

Sequences of memory diagrams such as those on pp. 57 – 58 are very important and
you should make sure that you understand how they are formed and what they explain.

The memory diagrams on pp. 57 – 58 depict object life and death. A reference may
be active or null and an object may be reachable or abandoned. Abandoned objects
are eligible for garbage collection, and are effectively lost from the program since
they are not reachable.

31

Graphical Object-Oriented and Internet Programming in Java – Volume 1

4.5 Object arrays

Reading: pp. 59–60 of HFJ.

Box[] boxes = new Box[10];

boxes is an object array. After initialisation, each element, for example boxes[3],
refers to an object. boxes is an array of references to objects on the heap.

Arrays are just one of Java’s data structures. They allow fast access to a random
element through the use of sub-scripting. Arrays also tend to be laid out in adjacent
memory cells and are therefore very efficient.

Any array is actually an object itself, so boxes points to an array object on the heap.
Each element of this object itself points to another object on the heap, or is set to
null.

4.6 Remote controlling an object

Reading: pp. 54–61 of 62, HFJ.

The dot operator acts on an object to return the value of a variable, or to invoke
(call) a method. You might like to think of the object reference as a remote
controller for the object. An instruction such as dogs[i].bark() is analogous to
pressing the button bark() on controller drops[i]. The controller sends the
message to the actual dog object on the heap.

4.7 Summary

There are two flavours of variables: primitive and reference.

Variables must always be declared with a name and a type.

The value of a primitive variable is the bits representing the value (e.g. 5, ‘a’,
true, 3.1416, etc.)

A reference variable is like a remote control. The dot operator (.) is like pressing
a button on the remote control to access a method or instance variable.

A reference variable has the value null when it is not referencing an object.

An array is always an object, even if the array is declared to hold primitives.
There is no such thing as a primitive array, only an array that holds primitives.

Memory diagrams illustrate object life on the heap.

References may be active or null; objects may be reachable or abandoned.

32

GooDrops

4.8 Programming

Learning activity

Write an animation, GooDrops, of many differently sized drops falling at various speeds. Figure 4.5
captures a single frame to show you what to aim for, or you can run GooDrops from the CD-ROM to look at
the whole animation. You should place GooDrops in a new package, ReferenceTypes and you should
copy simpleobjects/Drop.java and save in CIS220/ReferenceTypes along with GooDrops.java.

Figure 4.5: Screenshot of GooDrops

4.9 GooDrops

package referencetypes;

import java.awt.Graphics;

import java.util.Random;

import goo.Goo;

public class GooDrops extends Goo {

private Drop[] drops;

private int numDrops , maxSize = 9, maxVel = 9;

private Random random;

public GooDrops(int w, int h, int nd) {

super(w, h);

33

Graphical Object-Oriented and Internet Programming in Java – Volume 1

numDrops = nd;

drops = new Drop[numDrops];

random = new Random (1962);

for (int i = 0; i < numDrops; i++) {

int xpos = random.nextInt(w);

int ypos = random.nextInt(h);

int xvel = 0;

int yvel = 1 + random.nextInt(maxVel);

int size = 1 + random.nextInt(maxSize);

drops[i] = makeDrop(xpos , ypos , xvel , yvel , size);

}

}

public Drop makeDrop(int xpos , int ypos ,int xvel ,int yvel ,

int size){

return new Drop(xpos , ypos , xvel , yvel , size);

}

public void draw(Graphics g) {

for (int i = 0; i < numDrops; i++) {

drops[i].move(getWidth (), getHeight ());

drops[i].draw(g);

}

}

public Drop[] getDrops (){

return drops;

}

public Random getRandom (){

return random;

}

public static void main(String [] args) {

int width = 800;

int height = 500;

int numDrops = 200;

GooDrops gd = new GooDrops(width , height , numDrops);

gd.smooth ();

gd.go();

}

}

Here is an implementation of GooDrops. It is similar to GooDrop; the main difference
is the use of a Drop array, declared as an instance variable, to hold the drops. Drop
itself is imported from our simpleobjects package.

The constructor includes a loop through the Drop array, calling an instance method
makeDrop. This one-line method may seem unnecessary, but it has been included

34

Drop in Colour

with a view to inheritance; subclasses of GooDrops can override makeDrop in order to
fill the drop array with a different type of drop.

A java.util.Random object is used to generate pseudorandom integers because it is
more convenient than calling Math.random(), and because we can guarantee the
same sequence of pseudorandom numbers, so the animation looks the same each
time it is run. If we did not want this feature, we could instantiate Random with a
different seed at each invocation, for example by writing random = new
Random(System.currentTimeMillis());

The draw method accesses each drop from the array one by one. Each drop is asked
to move, and then to draw itself.

Notice that the instance variables have been marked as private. This means that
other objects cannot access these variables directly. Instead they have to call getters.
The getters in this class are getRandom() and getDrops(). The idea behind this
complication is the object design principle known as data-hiding (see Chapter 3) or,
synonymously as encapsulation (see Chapter 5).

The application is launched from GooDrops’ own main, rather than using a separate
launcher program.

Learning activity

Implement a coloured drop, ColourDrop.java, which draws a drop of any colour. Write an application,
GooDropsInColour, to show falling, colourful drops.

Hint. The Java API documentation on java.awt.Color class shows various Color constructors.
Colours can be represented in several ways. In the RGB colour space, each red, green and blue
component of the colour can be quantified either with a number in the range [0, 1.0f], or as an integer
between 0 and 255 – see below.

Color

public Color(int r,
int g,
int b)

Creates an opaque sRGB color with the specified red, green, and blue
values in the range (0 - 255). The actual color used in rendering
depends on finding the best match given the color space available
for a given output device. Alpha is defaulted to 255.
Parameters:
r - the red component
g - the green component
b - the blue component

4.10 Drop in Colour

package referencetypes;

import java.awt.Color;

import java.awt.Graphics;

35

Graphical Object-Oriented and Internet Programming in Java – Volume 1

public class ColourDrop extends Drop {

Color color;

public ColourDrop(int x, int y, int vx, int vy, int sz, Color c

) {

super(x, y, vx , vy , sz);

color = c;

}

public void draw(Graphics g){

g.setColor(color);

g.fillOval(xpos , ypos , size , size);

}

}

By subclassing Drop we save duplicating code. Since a Colour Drop moves in just the
same way as a Drop, we can simply subclass Drop in order to retain this behaviour,
but override draw to render a Drop in colour. The colour itself is saved as an instance
variable of type java.util.Color.

4.11 GooDrops in Colour

package referencetypes;

import java.awt.Color;

import java.util.Random;

import referencetypes.Drop;

import referencetypes.GooDrops;

public class GooDropsInColour extends GooDrops {

public GooDropsInColour(int w, int h, int nd) {

super(w, h, nd);

}

public Drop makeDrop(int xpos , int ypos , int xvel , int yvel ,

int size) {

Random random = getRandom ();

Color color = new Color(random.nextInt (256), random.nextInt

(256) ,

random.nextInt (256));

return new ColourDrop(xpos , ypos , xvel , yvel , size , color);

}

public static void main(String [] args) {

int width = 800;

int height = 500;

int numDrops = 200;

GooDrops gd = new GooDropsInColour(width , height , numDrops);

36

Learning outcomes

gd.background (0); // black background

gd.frameRate (25); // 25 frames per sec

gd.smooth ();

gd.go();

}

}

The application GooDropsInColour also uses inheritance to save us work. By
subclassing GooDrops we only need to override makeDrop. The random R, G and B
integers are generated inside the constructor call.

The launcher, main sets the display background to black with a call to Goo’s
background(int greyscale), where greyscale can be set between 0 (black) and 1
(white). Another call to Goo’s framerate asks for a framerate of 25 frames per
second.

4.12 Learning outcomes

By the end of this chapter, the relevant reading and activities, you should be able to:

understand the following concepts:

• primitive types, reference types, and the difference between them

• active references, null references and the difference between them

• reachable objects and abandoned objects

explain the limitations of programming with primitive types

understand the importance of memory diagrams, how they are formed and what
they explain

understand that variables must always be declared with a name and a type

understand that the value of a primitive variable is the bits representing the
value

explain how a reference variable can be seen as working like a remote control

explain how a reference variable has a value null when it is not referencing an
object

describe how an array is always an object, even if the array is declared to hold
primitives

explain how memory diagrams can be used to illustrate the operation of the
heap.

37

Graphical Object-Oriented and Internet Programming in Java – Volume 1

38

