
Software engineering,

algorithm design and analysis

Volume 2

I. Pu

CO2226

2006

Undergraduate study in
Computing and related programmes

This is an extract from a subject guide for an undergraduate course offered as part of the

University of London International Programmes in Computing. Materials for these programmes

are developed by academics at Goldsmiths.

For more information, see: www.londoninternational.ac.uk

This guide was prepared for the University of London International Programmes by:

I. Pu

This is one of a series of subject guides published by the University. We regret that due to pressure of work the author is

unable to enter into any correspondence relating to, or arising from, the guide. If you have any comments on this subject

guide, favourable or unfavourable, please use the form at the back of this guide.

University of London International Programmes

Publications Office

32 Russell Square

London WC1B 5DN

United Kingdom

www.londoninternational.ac.uk

Published by: University of London

© University of London 2006

The University of London asserts copyright over all material in this subject guide except where otherwise indicated. All rights

reserved. No part of this work may be reproduced in any form, or by any means, without permission in writing from the

publisher. We make every effort to respect copyright. If you think we have inadvertently used your copyright material, please

let us know.

Contents

Preface v

1 Algorithm analysis 1

1.1 Essential reading . 1

1.2 Learning outcomes . 1

1.3 Problems and algorithms 1

1.3.1 Implementation 2

1.4 Pseudo-code for algorithm description 2

1.5 Efficiency . 3

1.6 Measures of performance 3

1.7 Algorithm analysis . 4

1.8 Model of computation 5

1.8.1 Counting steps 6

1.8.2 Implementation 6

1.8.3 Characteristic operations 7

1.9 Asymptotic behaviour 8

1.9.1 Big O notations 8

1.9.2 Comparing orders of two functions 9

1.10 The worst and average cases 9

1.10.1 Implementation 10

1.10.2 Typical growth rates 12

1.11 Verification of an analysis 12

2 Abstract data types I: lists and hashing tables 15

2.1 Essential reading . 15

2.2 Learning outcomes . 15

2.3 From Abstraction to Implementation 16

2.3.1 The string abstract data type 17

2.3.2 The matrix abstract data type 18

2.3.3 The keyed list abstract data type 18

2.3.4 Common operations 19

2.4 Data structures and software performance 19

2.5 Motivation of abstract data types 19

2.6 Arrays . 20

2.6.1 Applications . 21

2.6.2 Array of objects 23

2.6.3 Two and multi-dimensional arrays 24

2.7 Lists . 24

2.7.1 References, links or pointers 25

2.7.2 Implementation of the links 26

2.7.3 Linked lists . 27

2.7.4 Operations on lists 28

2.7.5 Add one node to a linked list 29

2.7.6 Delete one node from a linked list 30

2.7.7 Implementation 31

2.7.8 Construct a list 31

2.7.9 Implementation 32

2.7.10 Other operations 34

2.7.11 Comparison with arrays 34

2.8 Stacks . 36

2.8.1 Operations on stacks 37

i

E8455 Software engineering algorithm design V2.pdf 3 29/06/2010 11:37:13

CIS226 Software engineering, algorithm design and analysis (vol.2)

2.8.2 Implementation 37

2.8.3 Applications . 39

2.9 Queues . 40

2.9.1 Operations on queues 40

2.9.2 Implementation of queues 41

2.9.3 Variation of queues 43

2.10 Hashing . 44

2.10.1 Collision . 46

2.10.2 Collision resolving 46

2.10.3 Extra work for retrieval process 50

2.10.4 Observation . 50

3 Algorithm design techniques 53
3.1 Essential reading . 53

3.2 Learning outcomes . 53

3.3 Recursion . 53

3.3.1 Implementation 56

3.3.2 What happens 57

3.3.3 Why recursion? 58

3.3.4 Tail recursion 63

3.3.5 Principles of recursive problem solving 63

3.3.6 Common errors 63

3.4 Divide and conquer . 65

3.4.1 Steps in the divide and conquer approach . . . 66

3.4.2 When Divide and Conquer inefficient 69

3.5 Dynamic programming 70

3.5.1 Overlapped subproblems 70

3.5.2 Dynamic programming approach 71

3.5.3 Efficiency of dynamic programming 72

3.5.4 Similarity to the Divide and Conquer approach 72

3.5.5 Observation . 73

4 Abstract data types II: trees, graphs and heaps 75
4.1 Essential reading . 75

4.2 Learning outcomes . 75

4.3 Trees . 75

4.3.1 Terms and concepts 76

4.3.2 Implementation of a binary tree 77

4.3.3 Recursive definition of Trees 79

4.3.4 Basic operations on binary trees 80

4.3.5 Traversal of a binary tree 80

4.3.6 Construction of an expression tree 81

4.4 Priority queues and heaps 84

4.4.1 Binary heaps 84

4.4.2 Basic heap operations 86

4.5 Graphs . 92

5 Traversal and searching 101
5.1 Essential reading . 101

5.2 Learning outcomes . 101

5.3 Traversal . 101

5.3.1 Traversal on a linear data structure 102

5.3.2 Binary tree traversal 102

5.3.3 Graph traversal 102

5.3.4 Depth-first traversal 102

5.3.5 Breadth-first traversal 102

5.4 Searching . 104

5.5 Sequential search . 105

5.6 Binary search . 106

ii

E8455 Software engineering algorithm design V2.pdf 4 29/06/2010 11:37:13

5.7 Binary search trees . 109

6 Sorting 113
6.1 Essential reading . 113

6.2 Learning outcomes . 113

6.3 Introduction . 113

6.4 Motivation . 113

6.5 Insertion Sort . 114

6.5.1 Algorithm analysis 115

6.6 Selection sort . 115

6.7 Shellsort . 117

6.8 Mergesort . 118

6.9 Quicksort . 121

6.10 General lower bounds for sorting 124

6.11 Bucket sort . 126

6.12 Sorting large records 127

6.13 Heapsort . 128

7 Optimisation problems 137
7.1 Essential reading . 137

7.2 Learning outcomes . 137

7.3 Optimisation problems 137

7.3.1 Multiplication of matrices 138

7.3.2 Knapsack problem 139

7.3.3 Coin changes 141

7.4 Greedy approach . 145

7.4.1 Huffman coding 145

7.4.2 Huffman decompression algorithm 148

8 Limits of computing 151
8.1 Essential reading . 151

8.2 Learning outcomes . 151

8.3 Computability and computational complexity theory . 151

8.4 Computational model 152

8.5 Decision problems . 153

8.6 Measure of problem complexity 154

8.7 Problem classes . 155

8.8 Class P . 156

8.9 Class NP . 156

8.10 P and NP . 157

8.11 NP-complete problems 158

8.11.1 What do we mean by hard? 158

8.11.2 How to prove a new problem is NP-complete . . 159

8.11.3 The first NP-complete problem 159

8.11.4 More NP-complete problems 160

9 Text string matching 161

9.1 Essential reading . 161

9.2 Learning outcomes . 161

9.3 String matching . 161

9.4 The string ADT . 162

9.5 String matching . 164

9.5.1 Naive string matching 164

9.5.2 Observation . 166

9.5.3 Boyer-Moore Algorithm 166

9.5.4 Observation . 168

9.6 KMP Algorithm . 169

9.7 Tries . 174

9.7.1 Standard tries 174

iii

E8455 Software engineering algorithm design V2.pdf 5 29/06/2010 11:37:13

CIS226 Software engineering, algorithm design and analysis (vol.2)

9.7.2 Compressed tries 175

10 Graphics and geometry 177
10.1 Essential reading . 177

10.2 Learning outcomes . 177

10.3 Quadtrees . 177
10.4 Octtrees . 178

10.5 Grid files . 178

10.6 Operations . 178
10.7 Simple geometric objects 179

10.8 Parameter spaces . 179

11 Revision for CIS226b examination 181
11.1 Examination . 181

11.2 Revision materials . 181
11.3 Questions in the examination 181

11.4 Read questions carefully 182

11.5 Recommendation . 182
11.6 Revision topics I . 183

11.7 Revision topics II . 183

11.8 Good luck! . 183

A Sample examination paper 185

B Sample solutions 189

C Pseudocode notation 195
C.1 Values . 195

C.2 Types . 195
C.3 Operations . 195

C.4 Priority . 195

C.5 Data structures . 196
C.6 Other reserved words 196

C.7 Control keywords . 196
C.8 Examples of sequential structures 196

iv

E8455 Software engineering algorithm design V2.pdf 6 29/06/2010 11:37:13

Preface

Introduction

Abstract data types or data structures provide powerful methods of

organising large amounts of data. Algorithm analysis enables you to
make a decision about the most suitable algorithm before

programming. Techniques using abstract data types and design

patterns are essential in conventional software development.

Once a good solution method is determined, a program must still be

written and implementation has to be completed. In this module we
therefore conduct a one hour laboratory session for every three

hours of lectures at Goldsmiths College, University of London. This

approach is to give you the opportunity to enhance your
programming skills in Java.1 In addition, you will do two 1Or in other similar programming

languages.assignments to gain problem-solving experience.

Textbooks

Although there are many books on algorithms and data structures

available on the market, it has been difficult to find a single text that

suits all the needs of this module. On the other hand, you may
already have some books on algorithms and data structures from

previous programming modules such as CIS212 or CIS109 that you

may not have finished studying.

Instead of any single text for essential and desirable reading, we

therefore recommend chapters from a number of text books. All
topics covered in these chapters and in this subjectguide are

examinable 2. There is also a list of books for further reading, and 2See Chapter 11 for a list of

important examinable topics.for supporting and historical background reading in the subject

guide. Details on availability of the books can be found at

www.amazon.co.uk or in your institution libraries.

The materials covered in the books may overlap and not every

chapter of a book is required for the examination. Hence you are
not expected to read all the books, nor all the chapters of a single

book on the list. You do, however, need to get hold of at least ONE

book on algorithms and data structures for frequent reference and
for studying individual topics in depth. Your book does not have to

be in Java but it should cover at least 80 percent of the examinable
topics below3: 3Of course, you still need to have an

access to the other 20 percent

materials in various sources such as

in the library.
1. Algorithms and efficiency analysis

2. Abstract data types and data structures

3. Lists, stacks, queues and sets

4. Recursions, divide and conquer

5. Trees, graphs and maps

v

E8455 Software engineering algorithm design V2.pdf 17 29/06/2010 11:37:14

CIS226 Software engineering, algorithm design and analysis (vol.2)

6. Sorting, searching and hashing

7. Dynamic programming

8. Graph algorithms, greedy heuristics and approximation

9. Complexity theory

10. Text processing.

Note it would be inconvenient, if not impossible, for you to have to

share a library’s textbook with other students to study more than 20

percent of the examinable materials, because the book may be
unavailable just when you need it urgently for a coursework or

examination.

To best study module CIS226b, you need to follow closely the

reading instruction for each chapter in the subject guide, paying a
particular attention to whether the word ‘and’ is used between

reading items. For example, if ‘A and B’ is found on the reading list,

you are strongly recommended to consult the materials in both A
and B.

Below is a collection of textbooks that are recommended at various
points in the subject guide which are undated periodically. Note the

books are updated frequently these days so search on the internet
for the newest edition before any purchase.

Essential reading

The chapters of various books are specified as essential reading.

These can be found at the beginning of each chapter of the subject
guide. You should read carefully the specified chapter(s) in at least

one of the books on the list for each chapter of this subject guide. If
there is any doubt, you should consult other books on the list. A full

list of these books can be found in the next section.

Desirable reading

The following texts are recommended because they provide the

detailed background for understanding and appreciation of some

topics in this module.

However, you are not required to study all the topics in these texts,

for no single text can entirely meet the requirements of this course
unit. The essential reading chapters are listed at the beginning of

each chapter of the subject guide.

List A

Michael T. Goodrich and Roberto Tamassia, Data Structures and Algorithms

in Java. (John Wiley & Sons, Inc., 2005, fifth edition)

[ISBN10 0-471-73884-0], [ISBN13 978-471-73884-8].

Duane A. Bailey Java Structures: Data Structures in Java for the principled

programmer. (McGraw-Hill Companies, Inc. 1999, McGraw-Hill

International editions) [ISBN 0-13-489428-6].

Jurg Nievergelt and Klaus H Hinrichs Algorithms & Data Structures.

(Prentice Hall, Inc., 1993) [ISBN 0-13-489428-6].

vi

E8455 Software engineering algorithm design V2.pdf 18 29/06/2010 11:37:14

Anany Levintin Introduction to the design and analysis of algorithm.

(Addison-Wesley Professional, 2003) [ISBN 0-201-743957].

Supporting and historical reading

These books are of interest and are recommended, but you will be
fully prepared for the examination should you have studied only

those essential texts above. These are provided for completeness

and to allow the interested reader to pursue some topics in more
depth. You will not be examined on the content of those books listed

in the references other than where the material appears in the texts
listed above.

List B

Additional reading

Russell L Shachelford Introduction to Computing and Algorithms.

(Addison Wesley Longman, Inc., 1998) [ISBN 0-201-31451-7].

Jeffrey Kingston Algorithms & Data Structures: Design, Correctness,

Analysis. (Addison-Wesley, 1997, or 1998, second edition)
[ISBN 0-201-40374-9].

Richard Johnsonbaugh and Marcus Schaefer Algorithms. (Pearson
Education International, 2004) [ISBN 0-13-122853-6].

Michael Main, Data Structures and Other Projects Using Java.
(Addison Wesley Longman Inc., 1999) [ISBN 0-201-35744-5].

Sara Baase and Allen Van Gelder Computer Algorithms: Introduction
to Design and Analysis. (Addison-Wesley Publishing Company, 2000)

third edition [ISBN 0-201-61244-5].

Thomas H. Cormen, Stein Clifford Charles E. Leiserson and

Ronald L. Rivest Introduction to Algorithms. (The MIT Press and

McGraw-Hill Book Company, 2001) second edition
[ISBN 0-262-03141-8] (MIT Press); [ISBN 0-07-013143-0]

(McGraw-Hill).

Mark Allen Weiss Data Structures and Problem Solving Using Java.

(Addison Wesley Longman Inc., 1998) [ISBN 0-201-54991-3].

Derick Wood Data Structures, Algorithms, and Performance.

(Addison-Wesley Publishing Company, Inc., 1993)
[ISBN 0-201-52148-2].

Gregory J.E. Rawlins, Compared to What? - An Introduction to the
Analysis of Algorithms. (Computer Science Press, 1992) [ISBN

0-7167-8243-X].

Christos H. Papadimitriou Computational Complexity.

(Addison-Wesley Publishing Company, 1994)
[ISBN 0-201-53082-1].

Sara Baase Computer Algorithms: Introduction to Design and

vii

E8455 Software engineering algorithm design V2.pdf 19 29/06/2010 11:37:14

CIS226 Software engineering, algorithm design and analysis (vol.2)

Analysis. (Addison-Wesley Publishing Company, 1988) second

edition [ISBN 0-201-06035-3].

Niklaus Wirth Algorithms + Data Structures = Programs. (London:

Englewood Cliffs; Prentice-Hall, 1976) [ISBN 0130224189].

About this subject guide

This subject guide outlines the main topics in the syllabus. It can be
used as a reference which summarises, highlights and draws

attention to some important points of the subject. It cannot,

however, replace a textbook although it is fairly self-contained. The
guide sets out a sequence which helps you to study the topics in the

module within limited hours. The guide provides some additional
background material including examples, lab exercises and sample

examination questions. It also provides guidance for further

reading. recommended textbooks.

One thing you should always bear in mind is the fact that the

algorithm subject, like subjects in any other area of computer
science, has kept evolving and has been updated frequently. You

should therefore not be surprised if you find different approaches,

explanations or results in the books you read including this guide.

About CIS226b, volume 2 of CIS226

This module provides an introduction to algorithm design and

analysis techniques. Our aim is to give students an insight into
various standard abstract data types and the common techniques for

designing efficient algorithms.

The objectives include to:

introduce fundamental issues in algorithm design such as

efficiency, recursion, abstract data types (data structures) and
complexity

demonstrate the standard techniques in algorithm design

study some well-known problems and algorithms

further develop your skills in Java programming.

The learning outcomes are:

On completion of the second half of the module, students should be

able to:

demonstrate the knowledge of techniques for identifying and

solving a computing problem

choose appropriate data structures for different computation

problems

conduct a basic analysis on time-efficiency of an algorithm in
the worst case

design efficient algorithms and implement them in Java

programs

viii

E8455 Software engineering algorithm design V2.pdf 20 29/06/2010 11:37:14

explain the limit of computations and the complexity classes for

decision problems.

Prerequisites

You should be familiar with some basic discrete mathematics, such

as functions, big-O notations, sets and logarithms. These topics can
be found in CIS102 or equivalent.

You should have already had some prior experience with
programming in Java, which is covered in CIS109 or equivalent.

This module, CIS226b, focuses on algorithm design and analysis

and relies upon most of your programming skills to implement
algorithms. It would be an advantage if you are familiar with

built-in data structures in Java such as arrays and vectors, concepts
in Java such as types versus classes, inheritance, constructor

methods, method overloading, method overriding.

Most importantly, you must also have easy access to a Java platform

or have a Java platform installed on a computer at home.

Installing Java

There are lots of public domain versions of Java among which the

most popular one is called JDK (free). It is at
http://www.javasoft.com/ or http://java.sun.com/. A great

amount of information is provided on these sites and you can

download the software.

If you are using Linux, then the free software package normally

already includes a free Java platform.

Testing the installation

An easy way to test your installation is to type the following at a
command prompt:

java -version

A message in response should be seen on the screen with other

system information on your platform.

For example:

java version "1.5.0_06"

Java(TM) 2 Runtime Environment, Standard Edition (build

1.5.0_06-b05) Java HotSpot(TM) Client VM (build 1.5.0_06-b05,

mixed mode, sharing)

Or, for the earlier version:

Kaffe Virtual Machine

Copyright (c) 1996-2004 Kaffe.org project contributors

ix

E8455 Software engineering algorithm design V2.pdf 21 29/06/2010 11:37:14

CIS226 Software engineering, algorithm design and analysis (vol.2)

(please see the source code for a full list of contributors).

All rights reserved. Portions Copyright (c) 1996-2002

Transvirtual Technologies, Inc.

The Kaffe virtual machine is free software, licensed under

the terms of the GNU General Public License. Kaffe.org is

an independent, free software community project, not directly

affiliated with Transvirtual Technologies, Inc. Kaffe is

a Trademark of Transvirtual Technologies, Inc. Kaffe comes

with ABSOLUTELY NO WARRANTY.

Engine: Just-in-time v3 Version: 1.1.4 Java Version: 1.1

If you see a flawed response such as a bad command or file name

or a command not found in response to your command ‘java

-version’, you know that your installation may have not been

completely successful. This sometimes may be simply because your
system cannot find the correct version of the file which runs Java

programs.

As Java has grown to so many versions and variations, we

recommend that you focus on the basic functions which can be run
in all environments.

CmapTool

Algorithm design, like other types of design, requires a process of

development from vague ideas to production details. CmapTools is
free software that may help designers to ease the journey of

converting their concepts to the design objects. You can find more

information about the CmapTool and download the software from
http://cmap.ihmc.us.

Study time

The materials covered in this module are taught internally at
Goldsmiths College, University of London in one academic term,

that is a three hour lecture and a one hour supervised lab session

per week for ten weeks. For each one hour lecture, students are
expected to spend at least two further hours on homework including

revision, attempting exercises and lab implementation.

You would, however, normally have to double the study hours if you

could not attend lectures. For example, if you self study at home,
you would expect to spend six hours on intensive study of the

materials and two hours for the lab exercises, plus a similar amount

of additional homework time, every week for ten weeks or the
equivalent.

It is, of course, impossible to tell you precisely the number of hours
required for you to study the materials in this module. It may

depend on many elements such as your academic background, the

condition of the environment, your health status, the complexity of
the subjects and your study methods. I recommend that you add an

extra couple of free hours to your plan at least in the first two weeks

x

E8455 Software engineering algorithm design V2.pdf 22 29/06/2010 11:37:14

and record the time it took you to meet the requirements, and adjust

your plan accordingly.

Study methods

One effective way to study algorithms is to commit yourself to

various DIY (do it yourself) activities. You should not believe an
algorithm until you have implemented and tested it. In theory, the

performance of an algorithm can be explored by analysis or

implementation. Implementation is not the main concern in this
module. However, implementation is an important way forward. It

is the only way, sometimes, to prove correctness (or more likely,
incorrectness) in practice. Investigation of certain behaviours of an

algorithm can also be an important motivation of algorithm design

and analysis.

You should try to implement as many algorithms as possible in a

conventional language such as Java. Attempting exercises and doing
courseworks often offer good opportunities to help your

understanding.

It can be useful to remember the Confucian4 saying about learning 4A famous ancient Chinese

philosopher.as you start your studies:

Tell me and I forget;

Show me and I remember;

Let me do it and I understand.

As experts have predicted that more and more people in future will

write programs without being programmers, you are recommended
to learn the important principles and apply them in your

programming practice as much as possible. The experience could be

very useful for your future career whatever you do.

More specifically:

1. For every hour of study on new material in a lecture, two hours

of lab work and two hours of revision or exercises are highly
recommended.

2. Use examples to help gain understanding of each problem.

3. Always ask the question: ‘Is there a better solution for the

problem?’

4. Practise as much as you can.

Laboratory exercises

There is a one-hour supervised lab session every week for each

student at Goldsmiths, University of London.

Lab exercise sheets are set for students to practise their

programming skills using the theoretical knowledge gained from the

course and are available soon after lectures each week. If you are
studying at an institution, your lecturer may provide a similar

resource.

xi

E8455 Software engineering algorithm design V2.pdf 23 29/06/2010 11:37:14

CIS226 Software engineering, algorithm design and analysis (vol.2)

Examination

Important The information and advice given in the following section are

based on the examination structure used at the time this guide was

written. However, the university can alter the format, style or

requirements of an examination paper without notice. Because of this we

strongly advise you to check the rubric/instructions on the paper you

actually sit.

The content covered in CIS226b will be examined in the second half

of a three-hour examination for CIS226.

Students will normally be required to answer a number of

questions;5 each includes a few subquestions (or ‘parts’) in each half 5You should check the details before

the examination.of the paper. These subquestions may be Bookwork, Similar and
Unseen.

Details about the examination and revision can be found in
Chapter 11.

Every year we advise the candidates to read the questions on the
examination paper carefully. You should make sure that you fully

understand what is required and what subquestions are involved in
an examination question. You are encouraged to make notes

(crossed through later as not to be marked), if necessary, while

attempting the questions. Above all, you should be completely
familiar with the course material. To achieve a good grade, you

need to have prepared well for the examination and to be able to

solve problems by applying the knowledge gained from your studies
of the module.

Content and plan

The main topics that we normally cover internally at Goldsmiths

College, University of London for CIS226b are as below, but you may

adjust them according to your level and your own time available.

Week 1

Lecture 1-3

The aim, objectives and plan of the course

Problems and algorithms

Big-O notation

Pseudocode

Cmaptools (http://cmap.ihmc.us)

Ex 1 Time efficiency

Week 2

Lecture 4-6

Abstract Data Types

array, lists, stacks, queues, sets, (trees,

graphs, hash tables, heaps)

Specialised data structures

Algorithms Design and Implementation

Ex 2 Abstract Data Types

Lab 1 Estimating time efficiency

xii

E8455 Software engineering algorithm design V2.pdf 24 29/06/2010 11:37:14

Week 3

Lecture 7-9

Algorithm Design Techniques (1)

Sorting, selection, searching and traversal.

Ex 3 Sorting, searching, traversal and selection

Lab 2 Implementation of ADT list, or binary tree

Week 4

Lecture 10-12

Algorithm Design Techniques (2)

Divide and conquer, Recursion

Ex 4 Divide and conquer, Recursion

Lab 3 Implementation of searching a sorted list, or

traversal of a connected graph.

Week 5

Lecture 13-15

Algorithm Design Techniques (3)

Dynamic programming

trees, graphs

Ex 5 Dynamic programming

Lab 4 Implementation of a Recursion programme

Study week

no lectures/labs

Week 7

Lecture 16-18

Algorithm Design Techniques (4)

Greedy approach and heuristics

hash tables, heaps

Ex 7 Greedy approach and heuristics

Lab 5 Implementation of dynamic programming

Week 8

Lecture 19-21

Limits of Computing

Intractable problems and approximation

Introduction to NP-completeness

Ex 8 Intractability and approximation

Lab 7 Greedy approach and heuristics

Week 9

Lecture 22-24

Some well known problems and algorithms (1)

String matching problems

Ex 9 String matching problems

Lab 8 Intractability and approximation

Week 10

Lecture 25-27

Some well known problems and algorithms (2)

Computational geometry problems

Ex 10 Computational geometry problems

Lab 9 String matching problems

Week 11

Lecture 28-30

xiii

E8455 Software engineering algorithm design V2.pdf 25 29/06/2010 11:37:14

CIS226 Software engineering, algorithm design and analysis (vol.2)

Revision

Ex 11 Sample examination questions

Lab 11 Computational geometry problems

Activity 0.0

WEB SITES6 AND SOFTWARE 6These addresses were accessible

when the Guide was written. In case

they have changed, you may use a

search engine such as Google to

search the new web address.

1. Free Java Books

(a) Thinking in Java

http://www.mindview.net/Books/TIJ/

(b) Java Gently

http://javagently.cs.up.ac.za/jg3e/

2. What are covered in the first year Java courses in other places?

(a) David J.Eck’s Java course:

http://math.hws.edu/eck/cs124/

(b) Java Tutorial

http://java.sun.com/docs/books/tutorial/

3. Installing Java system

http://burks.bton.ac.uk

http://java.sun.com/

http://textpad.com

4. Download and install CmapTool

http://cmap.ihmc.us

xiv

E8455 Software engineering algorithm design V2.pdf 26 29/06/2010 11:37:14

Chapter 1

Algorithm analysis

1.1 Essential reading

Anany Levintin Introduction to the design and analysis of algorithm.

(Addison-Wesley Professional, 2003) [ISBN 0-201-743957]. Chapter 2

Michael T. Goodrich and Roberto Tamassia, Data Structures and Algorithms

in Java. (John Wiley & Sons, Inc., 2005, fifth edition)

[ISBN10 0-471-73884-0], [ISBN13 978-471-73884-8]. Chapter 4

Mark Allen Weiss Data Structures and Problem Solving Using Java. (Addison

Wesley Longman Inc., 1998) [ISBN 0-201-54991-3]. Chapter 5

Russell L Shachelford Introduction to Computing and Algorithms. (Addison

Wesley Longman, Inc., 1998) [ISBN 0-201-31451-7]. Chapter 9

Jurg Nievergelt and Klaus H Hinrichs Algorithms & Data Structures.

(Prentice Hall, Inc., 1993) [ISBN 0-13-489428-6]. Chapter 16

1.2 Learning outcomes

This chapter is concerned with algorithms and algorithm analysis.

Having read this chapter and consulted the relevant material you
should be able to:

explain the term algorithm and the concept of the efficiency of
an algorithm in terms of big-O notation

develop a perspective on the study of computer science beyond

the learning of a particular programming language such as Java

describe commonly-used big-O categories.

1.3 Problems and algorithms

In this section, we introduce the concept of algorithms and discuss

the issues of fundamental analysis of algorithms.

A problem in this course is a general question to be answered,

usually possessing one or more parameters. It can be specified by
describing the form of parameters taken and the questions about the

parameters. An instance of a problem is an assignment of values to

the parameters. An algorithm is a clearly specified set of simple
instructions to be followed to solve a problem. In other words, it is a

step-by-step procedure for taking any instance of a problem and

producing a correct answer for that instance.

Example 1.1 Finding the minimum:

Problem Given a non-empty set of numbers, what is the minimum

element of the set?

1

E8455 Software engineering algorithm design V2.pdf 27 29/06/2010 11:37:14

CIS226 Software engineering, algorithm design and analysis (vol.2)

Instance:

What is the minimum element of (2,5,8,3) entered on a single line
from the keyboard?

Algorithm 1.1 is a solution for solving the problem of finding the
minimum of a set of data that are input from the keyboard. The

algorithm should give a correct answer for any set of data.

Algorithm 1.1 Minimum key

INPUT: nothing

OUTPUT: the minimum

1: read min;
2: while not eoln do
3: read x
4: if x < min then
5: min← x
6: end if
7: end while
8: print min;

1.3.1 Implementation

Algorithm 1.1 can be implemented to a Java method and run on a

computer:

import java.util.Scanner;

int min() {

Scanner input = new Scanner(System.in);

System.out.println("x=? (999 to end) ");

int x = input.nextInt();

int min = x;

while (x!=999) {

System.out.println("x=? (999 to end) ");

x = input.nextInt();

if (x < min) {

min = x;

}

}

return min;

}

1.4 Pseudo-code for algorithm description

Using a natural language such as plain English to describe an

algorithm is not impossible. However, one quickly realises that any
human language is too rich to be concise or precise enough for the

task. A common practice is to use so-called pseudo-code to describe

algorithms (see Appendix C for examples). The syntax of any
pseudo-code is similar to that of a high-level computer language

such as Java. It is therefore much more convenient for an algorithm

2

E8455 Software engineering algorithm design V2.pdf 28 29/06/2010 11:37:14

Measures of performance

in pseudo-code to be translated into a computer program in some

higher language than from a human language.

Thus once an algorithm for a problem is properly developed, it is a

relatively easy matter to implement or translate it into a program in
some computer language.

In this course, instead of giving a formal definition of the
pseudo-code, we just borrow conventional syntax in Java, or the

like. We encourage you to separate the algorithm design and

implementation in the first and second stages respectively. During
the first stage, i.e. the algorithm design stage we ignore the

implementation details and focus on problem-solving techniques
and algorithmic issues.

1.5 Efficiency

In this module, our goal is not only to develop a working algorithm,
but also an efficient algorithm for a given problem.

The speed of hardware computation of basic operations has been
improved dramatically, but efficiency matters more than ever today.

This is because our ambition for computer applications has grown

with computer power. Many areas demand a great increase in speed
of computation. Examples include the simulation of continuous

systems, high resolution graphics, and the interpretation of physical

data, medical applications, and information systems.

On the other hand (and more importantly), an algorithm may be so

inefficient that, even with computation speed vastly increased, it
would not be possible to obtain a result within a useful period of

time. The time that many algorithms take to execute is a non-linear
function of the input size. This can reduce their ability to benefit

from the increase in speed when the input size is large.

Example 1.2 A particular sorting algorithm takes n2 comparisons to
sort n numbers. Suppose that computing speed increases by a factor of

100. In the time that it was required to take to execute the n2

comparisons, it is now possible to do 100n2 = (10n)2 comparisons.
Unfortunately, with 100 times speed-up, only 10 times as many

numbers can be sorted as before.

1.6 Measures of performance

Naturally, the efficiency of an algorithm is estimated by its

performance. The performance of an algorithm can be measured by

the time and the space required in order to fulfil a task. The time and
space requirement of an algorithm is called the computational

complexity of the algorithm. The greater the amount of the time and

space required, the more complex is the algorithm.

The time complexity of an algorithm is, loosely speaking, an

imaginary execution time of the algorithm. The execution time can
be measured by the number of some characteristic operations

performed by the algorithm in order to transform the input data to

3

E8455 Software engineering algorithm design V2.pdf 29 29/06/2010 11:37:14

CIS226 Software engineering, algorithm design and analysis (vol.2)

the results.

Note that we do not measure the time complexity by the running
time of a program. This means that we do not use the common time

units such as second, minute and hour. The unit of the time
complexity, strictly speaking, should be the number of execution

steps, although we often do not use any unit.

An algorithm consists of a set of ordered instructions and the time

complexity, that is, the number of execution steps in an algorithm, is

irrelevant to the real time.

Note our main interest here is in an algorithm instead of a program.

A program is an implementation of an algorithm. The execution
time of a program depends on the implementation including not

only the operating system but also the speed of the computer itself.
The same program may run faster on a computer with a faster CPU,

but the same algorithm should perform the same number of

algorithmic steps to accomplishment a task.

Normally we are concerned with the time complexity rather than

space complexity of an algorithm. The reasons are that firstly it
becomes easier and cheaper to obtain space. Secondly techniques to

achieve space efficiency by spending more time are available.

In what follows, we use ‘complexity’ to mean the time complexity if

not otherwise indicated.

Observation

The complexity of an algorithm normally depends on the size of

input.

The number of operations may depend on a particular input.

Solution

For different sets of input data, we analyse the performance of
an algorithm in the worst case or in the average case.

For different algorithms, we focus on the growth rate of the time

taken by the algorithms as the input size increases.

The time complexity of an algorithm can be expressed by a function

of input size: T (n). We are normally interested in the behaviour of

T (n) as n grows large.

1.7 Algorithm analysis

With the measures of performance introduced earlier, it is possible

to conduct an analysis and estimate the cost of an algorithm.

Many reasons can be given to explain why we need algorithm

analysis. One main reason is that there are usually several
algorithmic ideas for a problem, and we would like to eliminate the

inefficient algorithms early. By early, we mean that we would like to

compute or estimate the computational complexity of any two
algorithms before actually implementing (coding) them into

programs.

4

E8455 Software engineering algorithm design V2.pdf 30 29/06/2010 11:37:14

Model of computation

Secondly, algorithms may behave differently for different input

sizes, and we would like to estimate their computational complexity
for large inputs. For some problems we simply have not found an

efficient algorithm yet, but we may find those algorithms feasible

and useful for input within some limited range.

Furthermore, the ability to do an analysis usually provides insight

into designing efficient algorithms. The analysis also could pinpoint
the bottlenecks which should be taken care of during coding.

In what follows, we shall introduce some fundamental methods for
algorithm analysis. Before moving on, we have to first agree a

model of ‘normal’ computer.

1.8 Model of computation

We adopt a so-called ‘random access machine’ (RAM) model. In this

model, certain hardware constraints for a real computer are ignored

in order to focus on algorithmic issues. Routine operations at
machine level, such as fetching instructions or data from the

memory are also ignored for the same reason.

We assume that our computer has the following convenient

properties:

1. It has a single processor (CPU) and runs our pseudo-code

algorithms in a sequential manner. A pseudo-code algorithm

consists of an ordered sequence of instructions in pseudo-code
(Appendix C). The instructions in each algorithm are executed

one after another in the given order.

2. It takes exactly one time unit to execute a standard instruction

(in pseudo code) for operations such as addition, subtraction,

multiplication, division, comparison, assignment and
conditional control. No complex operations, such as sorting and

matrix inversion, can be done in one time unit.

3. The storage for integers is of a fixed size, for example, 32 bits.

4. It has an infinitely large memory.1 1So there is no need to consider any

overflow issues. This assumption is

based on the fact that memory

techniques has developed to allow

the logical memory to be of a larger

size than its physical size.

The assumptions are necessary because our analysis result depends
on the model. For example, assigning 100 data into an array would

require 100 unit times in our model. The same task can be done in

one time unit, however, in a parallel computation model such as a
‘parallel random-access machine’ (PRAM), in which the 100 memory

cells can be accessed simultaneously.

The assumptions help keep analysis feasible and focused, for certain

hardware details are ignorable from an algorithmic point of view.
For example, standard operations such as addition, subtraction,

multiplication, division, comparison, assignment and conditional

control would require different amount of time to run on a real
computer. The storage of real computers is limited and the memory

for integers and reals may be of a different size. However, taking the

difference made by these hardware details into consideration gives
little impact on the result in comparison of different algorithms,

because these standard operations are required for almost every
algorithm. Taking too many details into consideration can, if

anything, make an analysis too complicated to be carried out. 5

E8455 Software engineering algorithm design V2.pdf 31 29/06/2010 11:37:15

CIS226 Software engineering, algorithm design and analysis (vol.2)

1.8.1 Counting steps

Given two algorithms A1 and A2, which one is more efficient? In
other words, which one has lower computational complexity? To

answer this question, one way is to simply count the execution steps
of each algorithm and compare the numbers of the steps of the two.

Example 1.3
Problem: Compute

∑n

k=1 k, where n is an integer.

Algorithm 1.2 Sum1(n)

INPUT: n
OUTPUT: sum

1: sum← 0
2: for k ← 1, k ≤ n, k ← k + 1 do
3: sum← sum + k
4: end for
5: print sum

From the fact
∑n

k=1 k =
n(n+1)
2 , we have

Algorithm 1.3 Sum2(n)

INPUT: n

OUTPUT: sum

1: print n(n + 1)/2

1.8.2 Implementation

These algorithms can be implemented to the following Java methods:

int sum1(int n) {

int sum = 0;

for (int k=1; k<=n; k++) {

sum = sum + k;

}

return sum;

}

int sum2(int n) {

int sum;

return (n*(n+1)/2);

}

We look at the time complexity by counting the steps taken in
execution. Let any assignment, arithmetic computation +,-,*,/,

read, print be all counted as one step. So for Algorithm 1.2, it takes

1 + n× 1 + 1 = n + 2 steps; and for Algorithm 1.3, it takes
1 + 1 + 1 = 3 steps to execute. Obviously, Algorithm 1.3 is more

efficient in terms of execution time.

How about the space efficiency? Let a simple variable require one

unit of storage. Algorithm 1.2 needs three units since it involves

three variables sum, k and n, and Algorithm 1.3 only needs one unit
since it involves only one variable n. We can therefore conclude that

Algorithm 1.3 is more efficient in terms of storage, too.

6

E8455 Software engineering algorithm design V2.pdf 32 29/06/2010 11:37:15

Model of computation

In fact, Algorithm 1.3 has an important advantage, that is, it takes

constant time to execute no matter how large n is. This means that it
takes the same amount of time to run no matter how many such

numbers need to be added up.

We have done an analysis. Had we, however, to undertake all the

counting every time to analyse an algorithm, the task would be

tedious and quickly become infeasible. We need some easier
approach.

1.8.3 Characteristic operations

A complexity analysis gives an estimate of the resources consumed
by an algorithm. The relationship between the amount of time and

space allows us to focus on the time efficiency only. The time

complexity is, after all, T (n), a function of the input size n. The more
data, the longer it takes to run the algorithm. The task of counting

steps can be made easier if a reasonable measure of the input size of

some major operations can be established and then only those
operations relevant to the input size need to be considered.

Example 1.4 For each algorithm below, we choose a relevant

characteristic operation:

1. An algorithm searching an element x in a list of names:

Choose the comparison of x with an entry in the list;

2. An algorithm multiplying two matrices with real entries:

Choose the multiplication of two real numbers;

3. An algorithm sorting a list of numbers:

Choose the comparison of two list entries;

4. An algorithm to traverse a binary tree:
Choose the visit of a tree node.

The characteristic operations could be some very expensive

operations compared to others, or they might be of some theoretical
interest. It allows a good sense of flexibility to choose these

fundamental operations as a measure of time complexity.

To ease the analysis of algorithms, it would be useful to summarise

the time complexity for common algorithmic structures below as a

reference. You are encouraged to spend some time to derive the
formulae by yourself and then compare yours with the ones in a

textbook.

For loops:

Consecutive statements:

If-then-else:

Think of an algorithm which takes a number of steps of the

following order:

Logarithmic

Exponential.

7

E8455 Software engineering algorithm design V2.pdf 33 29/06/2010 11:37:15

CIS226 Software engineering, algorithm design and analysis (vol.2)

1.9 Asymptotic behaviour

We are often interested in the rate of growth of the time required for

an algorithm when the input size gets larger. So the lower order

terms of the time complexity T (n) could be ignored, where n is a
positive integer. In other words, we only need to master the

asymptotic behaviour of T (n). Here the term asymptotic means
approximate in a specific way.

Example 1.5 Suppose that the time complexity of an algorithm is

T (n) =
1 + n2

n

where n is the input size to the algorithm.

It is easy to see some asymptotic behaviours of T (n) such as, T (n) ∼ n
when n→∞ 2 2Here symbol ‘∼’ means ‘will be

approaching’; and ‘→’ means ‘goes

to’. So ‘T (n) ∼ n when n → ∞’

reads ‘The values T (n) will be
approaching n when n grows to
infinitely large.’.

because

T (n) =
1 + n2

n
=

1
n
+ n

1
∼
0 + n

1
= n

Similarly, T (n) ∼ 1
n

when n→ 0.

Here n and 1
n

are both simpler than T (n) and it is easier to handle

their behaviour in an analysis.

We say that n and 1
n

are asymptotic behaviour of T (n) when n→∞
and n→ 0 respectively.

1.9.1 BigO notations

In general, the asymptotic behaviour of functions can be described

by so-called “big-O” notations, often consisting of four members O(),
Ω(), Θ() and o(). They are called “big-oh”, “omega”, “theta” and
“small-oh” respectively.

Let g be a function of n. Each of O(g), Ω(g), Θ(g) and o(g) defines a

set of functions related to g.

O(g(n)) is a set of functions that grow at most as fast as g when

n→∞.

Ω(g(n)) is a set of functions that grow at least as fast as g when

n→∞.

Θ(g(n)) is a set of functions that have the same growth rate as g
when n→∞.

o(g(n)) is a set of functions that grow slower than g when n→∞.

Conventionally, we use T (n) = O(g(n)) to mean T (n) ∈ O(g(n)). We
define T (n) = O(g(n)) if there are positive constants c and n0 such

that T (n) ≤ cg(n) when n ≥ n0.

Similarly, T (n) = Ω(g(n)) if there are positive constants c and n0
such that T (n) ≥ cg(n) when n ≥ n0.

8

E8455 Software engineering algorithm design V2.pdf 34 29/06/2010 11:37:15

The worst and average cases

T (n) = Θ(g(n)) if and only if T (n) = O(g(n)) and T (n) = Ω(g(n)).

T (n) = o(g(n)) if T (n) = O(g(n)) and T (n) 6= Θ(g(n)).

Example 1.6 Let TA(n) be the time complexity of an algorithm A, and

n is the input size of the algorithm. Suppose TA1 =
n2

2 and TA2 = 7n.

Illustrating definitions, we see that 7n is O(n2) but that 7n 6= Θ(n
2

2)

because n2

2 6= Θ(7n).

1.9.2 Comparing orders of two functions

When comparing two functions in terms of order, it is often
convenient to take the alternative definitions: Let limn→∞

T (n)
g(n) = L.

The limit can have four possible values:

1. If L = 0 then T (n) = o(g(n))

2. If L = a 6= 0 then T (n) = Θ(g(n))

3. If L =∞ then g(n) = o(T (n))

4. If L oscillates then there is no relation (but this will not happen

in our context).

Example 1.7 Given TA1(n) = 1000n and TA2(n) = n3, which function

grows faster when n→∞? What is the relationship between the two
functions?

Solution limn→∞
1000n

n3
= 0. Therefore, TA1(n) is o(n3), which means

TA1(n) grows strictly slower than TA2(n).

1.10 The worst and average cases

The behaviour of an algorithm usually depends not only on the size
of the input, but also on the input itself. Look at Algorithm 1.4

which determines whether integer x is an element of array
Y [0..n− 1], where n is a non-negative integer.

Example 1.8

Algorithm 1.4 boolean foundFirstX(int x, int Y[])

1: i← 0
2: boolean found← false
3: while (notfound) && (i < length(Y)) do
4: found← (x = Y [i])
5: i← i + 1
6: end while
7: returnfound

The time complexity of foundFirstX(x,Y) depends on the value of

x and on the contents of the array Y . For example, if Y [0] = x, that

is, the first element in array Y equals to x, then the while loop
(step 3–6 in the algorithm) will only be executed once, and the

number of execution steps is only 1 + 1 + 1× (1 + 1 + 1 + 1) + 1 = 7,

9

E8455 Software engineering algorithm design V2.pdf 35 29/06/2010 11:37:15

CIS226 Software engineering, algorithm design and analysis (vol.2)

including step 1, step 2, 1× (step 3, 4, 5, 6), and step 7. If x equals

the kth element of Y , the number of execution steps becomes
1 + 1 + k × (1 + 1 + 1 + 1) + 1 = 3 + 4k, where k ≤ length(Y),
including step 1, step 2, k × (step 3, 4, 5, 6), and step 7. Each of

these different situations is called a case. In each case, the algorithm
gives a different performance.

We therefore need to consider the behaviour of the algorithm for
two special cases, namely the worst case and the average case.3 3Although it is desirable, the best

case is not very interesting, for it

does not help much with a budget.

In contrast, the worst case

prepares us for the most costly

situation, and the average case

tells us what to normally expect.

In terms of time complexity, the worst case is the situation where
the algorithm would take the longest time. The average case is the

case where the average behaviour is estimated after every instance
of the problem has been taken into consideration. We define two

functions of n, the input size, for the two cases respectively.

In general, an algorithm may accept k different instances of size n.

Let Ti(n) be the time complexity of the algorithm when given the ith
instance, for 1 ≤ i ≤ k. Let pi be the probability that this instance
occurs.

Then the time complexity for

The worst case:

W (n) = max
1≤i≤k

Ti(n)

The average case:4 4This can be extremely complex

sometimes.

A(n) =
k∑

i=1

piTi(n)

In words, W (n) is the maximum number of characteristic operations
performed by the algorithm on any input of size n. A(n) gives the

behaviour of the algorithm on average for different instances.

Clearly, A(n) ≤W (n).

The worst case analysis could help to provide an estimate for a time

limit for a particular implementation of an algorithm. It is
particularly useful in real time applications. The average case

analysis is more meaningful in providing an overall picture because

it computes the number of steps performed for each possible input
instance of size n and then takes the (probability-weighted) average.

In this course, we shall consider only the worst case analysis if not
specified otherwise.

The result of an algorithm analysis can sometimes turn out to be

unsatisfactory or extremely difficult to achieve. In these cases, an

empirical 5 approach should be considered. 5An empirical approach is a means of

investigating the efficiency of an

algorithm by experiments.

1.10.1 Implementation

Algorithm 1.4 can be realised in the following Java method:

boolean foundFirstX(int x, int Y[]) {

boolean found = false;

int i=0;

while ((!found) && (i< Y.length)) {

10

E8455 Software engineering algorithm design V2.pdf 36 29/06/2010 11:37:15

The worst and average cases

found = (x==Y[i]);

i++;

}

return found;

}

It is easy to modify the program slightly in order to compute the
actual number of Java statements executed. In the example below,

we define a variable count before (or after) each statement, and

display the value of count at a few places of the program.

boolean foundFirstX(int x, int Y[]) {

int count = 1;

boolean found = false;

count ++;

int i=0;

System.out.println("Step 1--2: "+count);

count ++;

while ((!found) && (i< Y.length)) {

count ++;

found = (x==Y[i]);

count ++;

i++;

count ++; // for while

}

System.out.println("Step 1--6: "+count);

count ++;

System.out.println("All steps: "+count);

return found;

}

You can conduct an experiment in which different integer arrays Y[]

are input and the different number of execution steps are displayed

on your screen. For example, if call the methods with “int A[] =

9, 4, 5, 7, 1, 2;”, you would see

...

Step 1 and 2: 2

Step 1--6: 21

All steps: 22

...

If with “int A[] = 2, 4, 5, 7, 1, 2;”, you would get

...

Step 1--2: 2

Step 1--6: 6

All steps: 7

...

This can be implemented in two classes as in Example 1.9:

1. Place the method foundFirstX in Section 1.10.1 in a class

experimentCount;

2. Write the main class test which inputs a x and an array, say, A,

and print out the foundFirstX(x, A).

Example 1.9 class experimentCount {

boolean foundFirstX(int x, int Y[]) {

11

E8455 Software engineering algorithm design V2.pdf 37 29/06/2010 11:37:15

CIS226 Software engineering, algorithm design and analysis (vol.2)

... // copy the method here

}

}

class test {

public static void main(String args[]) {

experimentCount acount = new experimentCount();

int A[] = {9, 4, 5, 7, 1, 2};

int B[] = {2, 4, 5, 7, 1, 2};

acount.printArray(A);

System.out.println(acount.foundFirstX(2, A));

System.out.println();

acount.printArray(B);

System.out.println(acount.foundFirstX(2, B));

}

}

1.10.2 Typical growth rates

Some functions are commonly seen with typical growth rates in the
algorithm analysis. We list some common ones here.

Note All logarithms in this subject guide are of base 2 if not stated
otherwise.

Functions Name

c constant
logn logarithmic

log2n log-squared
n linear

n logn n-log-n

n2 quadratic

n3 cubic
2n exponential

1.11 Verification of an analysis

It is important to conduct an algorithm analysis, before any
implementation, to avoid any unnecessary expensive labour. It is

even more important to make sure that the analysis result is correct.
Hence verification of an analysis is necessary and highly

recommended, although it sometimes turns out to be difficult.

For example, we can always:

check if the empirical running time matches the running time
predicted by the analysis

for a range of n, compute the value T (n)/f (n) where f (n) is the

analysis result and T (n) is the empirically observed running
time. This should be ideally a constant as n varies.

12

E8455 Software engineering algorithm design V2.pdf 38 29/06/2010 11:37:15

Verification of an analysis

Activity 1.11

TIME COMPLEXITY

1. Discuss briefly the time complexity in the worst case for the
algorithm below. Indicate the input, output of the algorithm and

the main comparison you have counted.

Algorithm 1.5 insertionsort(int array[0..n-1])

1: for i← 1, i ≤ n− 1, i + + do
2: current← array[i]
3: position← i− 1
4: while position ≥ 1 and current < array[position] do
5: array[position + 1]← array[position]
6: position← position− 1
7: end while
8: array[position + 1]← current
9: end for

2. Consider the big O behaviour of the code below in terms of N .
Discuss briefly its time complexity.

1: k ← 1
2: repeat
3: k ← 2× k
4: until k ≥ N

3. A certain algorithm always requires 1000 operations, regardless
of the amount of data input. Provide a big-O classification of the

algorithm that reflects the efficiency of the algorithm as

accurately as possible.

4. Modify the main class test in Example 1.9 (Section 1.10.1) so
that the program can take a x and an array A of integers from

the keyboard, and print out the number of execution steps of

program foundFirstX(x, A).

Hint You only need to re-write some lines of the main method

below (see the comments):

class test {

public static void main(String args[]) {

experimentCount acount = new experimentCount();

// ... to be modified from here to the end.

int A[] = {9, 4, 5, 7, 1, 2};

int B[] = {2, 4, 5, 7, 1, 2};

acount.printArray(A);

System.out.println(acount.foundFirstX(2, A));

System.out.println();

acount.printArray(B);

System.out.println(acount.foundFirstX(2, B));

}

}

13

E8455 Software engineering algorithm design V2.pdf 39 29/06/2010 11:37:15

