
Software engineering,

algorithm design and analysis

Volume 1

T. Blackwell

CO2226

2007

Undergraduate study in
Computing and related programmes

This is an extract from a subject guide for an undergraduate course offered as part of the

University of London International Programmes in Computing. Materials for these programmes

are developed by academics at Goldsmiths.

For more information, see: www.londoninternational.ac.uk

This guide was prepared for the University of London International Programmes by:

Tim Blackwell

This is one of a series of subject guides published by the University. We regret that due to pressure of work the author is

unable to enter into any correspondence relating to, or arising from, the guide. If you have any comments on this subject

guide, favourable or unfavourable, please use the form at the back of this guide.

University of London International Programmes

Publications Office

32 Russell Square

London WC1B 5DN

United Kingdom

www.londoninternational.ac.uk

Published by: University of London

© University of London 2007

The University of London asserts copyright over all material in this subject guide except where otherwise indicated. All rights

reserved. No part of this work may be reproduced in any form, or by any means, without permission in writing from the

publisher. We make every effort to respect copyright. If you think we have inadvertently used your copyright material, please

let us know.

Contents

Introduction iii

I Principles 1

1 Software Engineering 3

1.1 What is a good system? 3

1.2 The problem . 4

1.3 Building systems with objects 5

1.4 OO design . 7

1.5 Exercises . 9

1.6 Summary . 9

2 Development Process and Modelling 11

2.1 Iterative and waterfall processes 11

2.2 Design and modelling 12

2.3 A unified modelling language: UML 13

2.4 Fitting UML into a process 14

2.5 Exercises . 15

2.6 Summary . 16

II UML 17

3 Use Cases 19

3.1 Requirements capture 19

3.2 The basic technique 20

3.3 When to use use cases 21

3.4 Exercises . 21

3.5 Summary . 21

4 Class Diagrams: The basic technique 23

4.1 Class identification . 23

4.2 Properties . 24

4.3 Properties as code . 25

4.4 Adding more information to the class model 26

4.5 When to use class diagrams 27

4.6 Exercises . 27

4.7 Summary . 27

5 Sequence Diagrams 29

5.1 The basic technique 29

5.2 Advanced techniques 30

5.3 When to use sequence diagrams 31

5.4 Exercises . 31

5.5 Summary . 31

6 Class Diagrams: Advanced techniques 33

6.1 Responsibilities and collaborators 33

6.2 Static operations and attributes 34

6.3 Aggregation and composition 34

6.4 Interfaces and abstract classes 34

i

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

6.5 Classification . 35

6.6 Association classes and visibility 36
6.7 When to use advanced concepts 36

6.8 Exercises . 37

6.9 Summary . 37

7 State Machine Diagrams 39

7.1 The basic technique 39

7.2 Implementing state diagrams 40
7.3 When to use state diagrams 41

7.4 Exercises . 41
7.5 Summary . 41

8 Activity Diagrams 43

8.1 The basic technique 43
8.2 Advanced techniques 44

8.3 When to use activity diagrams 45

8.4 Exercises . 46
8.5 Summary . 46

9 Summary of UML modelling techniques 47

III Quality 49

10 Product Quality 51

10.1 Verifying software . 51
10.2 Validating software . 52

10.3 Testing . 52
10.4 Exercises . 53

10.5 Summary . 54

11 Process Quality 55
11.1 Project management 55

11.2 Project planning . 56

11.3 Exercises . 56
11.4 Summary . 57

IV Resources 59

12 Analysis and design of a personal 0rganiser 61

12.1 Scenarios . 61

12.2 Use cases . 61
12.3 Class Identification . 62

12.4 UML diagrams . 62

13 Sample examination paper 69

13.1 Advice . 69

13.2 Questions . 69
13.3 Answers . 71

ii

Introduction

A while ago I decided to build a small tool shed. I took a trip to the
local construction yard and bought some wood. Back home, I built a

wooden frame for my shed, sawing the bits of wood as I needed

them. I then nailed sheets of wood to the frame. I left a space for a
window - but I had forgotten to buy any glass at the yard, so I

returned there. I discovered that the yard had ready-made windows,
and they looked rather good, so I bought one. Returning home, I

found that the space was too small for the window unit I had just

bought, but this was not a problem because I could easily saw some
wood away from the wall panel. And so I continued with my

haphazard construction, returning to the yard from time to time to

buy roof felt, a door, hinges etc. Finally my shed was finished and it
was fine. In fact it was so good and I was so proud of my

achievement that I commenced another, larger construction project.
I really did need a bigger kitchen.

After many trips to the construction yard to replace ill-fitting pipes
and window frames, after knocking down a newly-built wall

because I had forgotten to install any plumbing, and after countless

other minor re-starts, the kitchen extension was finished, and it was
OK, even though it had taken me months to complete. My next

project was a complete new house, built from scratch in a

neighbouring field.

You know the ending to this domestic tale! My construction
techniques just could not scale to this big project. The complexity of

the supply of materials (bricks, tiles, concrete, plaster, wood...), the

relationship between the various systems (heating, drainage,
electric, gas) and the ramifications of late design change (perhaps

the stairs should really be to the right of the hall - but then the

bathroom needs to be moved to the left of the landing - now this
means re-routing the water pipes - ...) meant that, if I were lucky,

this project might actually have succeeded, but I would certainly
overrun and at a very high cost. And would it be the house I actually

wanted?

After some calls I assembled a project team. An architect designed

the house, producing several plans of her design according to my

initial brief. Several rather artistic drawings showed the house from
the outside so I was able to judge the overall physical design. Other

more formal plans of the interior layout, so I could imagine walking

around inside and visiting the various rooms. At this stage I changed
a few things. Still other plans were made for the electrician and the

plumber detailing where the pipes and cables should be fitted.
There was even a special plan of the kitchen showing in detail the

work-surfaces and appliances. A surveyor was employed to organise

the supply of materials, builders were employed to perform the
construction, and engineers checked the work at various stages. A

manager oversaw the whole process.

iii

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

Learning activity

Extract from this tale some general principles of large-scale construction.

Comments on the activity

Large scale construction requires: analysis of the project so that the right thing is built;

early consultation with the client; plans of the project from various perspectives and

levels of analysis; inclusion of pre-built components into the design; management to

ensure that parts of the project are built in the correct order; builders; people to check

the construction, both for accuracy, and for quality.

All of these principles apply to software projects. Here the

constructed artefact is not tangible, but is a logical object. A large
piece of computer code is very intricate, far too complex for any

person to understand. Additional complexity arises from interaction
between the software and an uncertain physical world, and in

understanding the changing needs of the client. Software, then,

needs to be engineered.

This course is strategically placed at the midpoint of your studies.

You will already have studied a computer language at an
introductory level, corresponding to rudimentary do-it-yourself

skills. Later in your studies you will be developing a larger software

project and this will require a more systematic and scalable
approach. You will no longer be able to sit at the computer and type

your programme code in a trial and error fashion. As the
programme grows in size you will drown in a sea of complexity.

Your software project will have to be designed, you must become a

software architect. It is the purpose of this course to provide you
with the skills and insights to bridge the gap between small scale

programming and large commercial applications.

The complexity of software is modelled, rather like an architect

models a building, with the use of diagrams. We shall use a

technique that has become an industry standard: the Unified
Modelling Language (UML). Proficiency at UML, along with the

computer languages you have studied, will be amongst the main
transferable skills you will acquire throughout your entire degree

programme.

This subject guide, which covers one half of CIS226, provides an

introduction to software engineering. Part I of the guide begins with

a look at some principles of good software design and how these
principles fit into a particular developmental process. The main

topic of this course unit, covered in Part II, examines how to analyse
and design software using the Unified Modelling Language (UML).

Part III discusses quality assurance, both of the product and in the

process. Part IV shows a specimen software project and examination.

There are two software projects in this guide: a Personal Organiser

and Space Game. Each chapter of part II ends with an exercise for
each project. These exercises cover the analysis and design stages of

the software life cycle. Algorithm design is an important part of the

implementation phase of a software project, and this is covered in
the second half of this course unit. There will not be any

implementation of Personal Organiser or Space Game. The final

iv

stages of a software project are testing and maintenance, which, in

the absence of actual code, can only be studied theoretically in this
course. Later in your studies you will undertake a complete software

project and you will find the ideas and skills of CIS226 invaluable

for the successful completion of this project.

Here are the main topics of this course, arranged to correspond to

the parts of this guide:

I Principles

(a) the role of design and modelling in software development

(b) software development process

II UML

(a) use cases

(b) class, sequence, state machine and activity diagrams

(c) objects and links

(d) compositions, aggregations and dependencies

(e) other UML diagrams and concepts

III Quality

(a) Product quality: verification, validation and testing

(b) Process quality: project management and planning

How to use this subject guide

This subject guide is not a self-contained account, but is a

companion to the course texts UML Distilled by Martin Fowler and

Using UML by Perdita Stevens and Rob Pooley. It is essential that you

obtain these books. This guide is structured in the form of selected

readings from these texts. Learning activities will test your

understanding of the main points of each reading. You are strongly
advised to attempt these activities as a way of monitoring your own

progress. There are more exercises at the end of each chapter and a
sample examination paper at the end of the guide.

Each chapter begins with a general statement of the essential
reading for this part, and throughout the text you will find specific

instructions on what to read. It is important that you read the

relevant sections of the course texts when instructed to because text
subsequent to a reading will only make sense in the context of the

reading. The reading will be cited on the following format:

Read UUML/UMLD, Chapter x, heading [omit]

where UUML/UMLD are the title initials of the course texts, x is the
relevant chapter (identical to the chapter(s) of the essential reading)

and heading is the chapter section for this directed reading. Each
chapter of either course text begins with a short introduction which

does not have a section heading and is denoted introduction. You

are expected to read all the subsections contained in the section you
have been directed to. Some directions include an omit guard which

tells you to ignore certain subsections or boxes. British English is

used throughout this guide, except in quotations and section
headings for the set readings, where the original punctuation and

spelling (which might be American English) is used.

v

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

There is an additional list of books which expand on a number of

topics and you are advised to deepen your understanding by
referring to these additional texts where directed.

Readings

Here are the details of the course texts and additional materials:

Essential

1. UML Distilled (third edition), Martin Fowler, Addison-Wesley,
2004

2. Using UML (updated edition), Perdita Stevens with Rob

Pooley, Pearson Education Limited 2000

Supplementary

1. Project-based Software Engineering, Evelyn Stiller and Cathie
Leblanc, Addison Wesley, 2002

2. Software Engineering (fifth edition), Roger Pressman,

McGraw-Hill, 2000

3. The Mythical Man-Month (anniversary edition), Frederick

Brooks, Addison Wesley 1995

4. Effective Java, Joshua Bloch, Addison Wesley 2001

Aims and objectives

At the end of this course you will be able to:

1. Explain the role of software development in the software

life-cycle

2. Produce static and behavioural models of software programs

3. Specify and verify software systems

4. Decompose problems and develop software architectures

5. Implement software models in a structured and efficient way.

These are the major objectives of this course unit. Each chapter also

lists a number of learning outcomes. The learning outcomes break
the objectives into manageable tasks.

The examination

You will be assessed on your understanding of objectives 1 - 4.

(Objective 5 will be assessed at a later stage of your studies when
you will be asked to implement a particular project.) The method of

assessment for the complete course unit CIS226 will be one unseen

written exam paper of 3 hours (85 per cent) and four equally
weighted assignments (15 per cent). Software Engineering (the

subject of this guide) will comprise one half of the overall mark for
CIS226. There is a sample examination paper for Software

Engineering and advice on exam preparation in the final chapter of

this guide.

vi

Part I

Principles

1

Chapter 1

Software Engineering

Essential reading

Using UML Chapters 1 and 2

All large-scale construction projects follow five main phases of

activity: analysis, design, construction, testing and maintenance.

Software projects are no exception. Software engineering is
concerned both with the phases themselves and also with how each

phase fits into the overall development of the project (in software
engineering-speak, process).

A large software project runs like this: software architects draw up
plans (models) at various levels (abstractions) of analysis. The

models facilitate further analysis and design. Models also serve as

construction guides during the implementation phase and as
documentation of the end result. To facilitate design and

implementation, ready-made units (components) are used wherever

possible. A project manager oversees the whole process.

A major aspect of software engineering is therefore concerned with

the development process. However, in order to judge how well our
software is engineered, we need to have an idea of software quality.

In most domains of engineering, we understand fairly well what a
successful construction is, and how to achieve it. For example,

bridges should not fall down (and they rarely do), and there are

accepted design principles, construction techniques and quality
assurance assessments. The situation with engineered software is

not so clear, however.

This chapter begins by considering what a high quality software

system should be like and outlines some important design
principles. Software design with objects is an important

manifestation of these principles and the important aspects of this

paradigm are explained in the remaining sections of this chapter.

1.1 What is a good system?

Read UUML, Chapter 1, What is a good system?.

Stevens and Pooley, the authors of UUML point out that a good

system is surely one that meets its users’ needs. They list five

desirable attributes (namely: usability, reliability, flexibility,
affordability and availability) of a good system and consider how

well current systems satisfy these criteria.

3

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

Although successful systems do exist, there are a number of

spectacular failures. These are informally known as software horror
stories and a web search will reveal many sources of information.

Remarkably, many large projects are cancelled, and of those that do

survive, most will significantly overrun their initial planning period.
Three quarters of large projects that are actually completed will

ultimately fail!

Learning activity

Suppose that you are managing a large software project which is slipping behind

schedule. Should you employ more people to work on the project? Explain your

answer.

Comments on the activity

The surprising answer to this question is that increasing the size of the team will not

necessarily have any benefit. The reason for this is that as the team increases in size,

more and more of the project’s costs and time are consumed in the overhead of

inter-person communication. In fact, the time needed to ensure that all the information

is available to keep the work consistent can actually extend a project. This idea is

expanded at some length in Fred Brooks’ The Mythical Man Month.

1.2 The problem

Read UUML, Chapter 1, What are good systems like? [omit

Architecture and components, Component-based design: pluggability]

What is behind this gloomy state of affairs alluded to above? Quite

simply, software is extremely complex: there is a limit to how much
we can understand at one time.

If your only experience of programming has been an introductory
course on Java, you will have been the sole author of your

programmes and should (in principle) have been able to understand
everything about your code. At first you probably just sat in front of

a screen and typed code directly into an editor, rather like me and

the shed. However, as an application grows in size, this
unstructured approach becomes increasingly hard to sustain - the

programme becomes a single monolithic unit and is just too

complex and difficult to develop and maintain. It seems that some
time must be spent planning how you will code your solution to a

software problem. Then you will implement your solution. Good
quality systems are surely designed.

A number of fundamental design concepts are broadly agreed upon.
See Software Engineering by R. Pressman, sections 13.4 and 13.5 for

a full discussion. Above all, the division of software into smaller

modules is universally accepted as the main way to control
complexity. There is nothing special about this idea; it is the way

that we seek to understand anything. For example, science works by

modularising the world in a process called reductionism. There is a
hierarchy of software modules: from methods to classes to packages

to subsystems. Note however that an excessive modularisation of a

4

Building systems with objects

system could actually increase overall complexity due to the

overhead of integrating very many modules.

Abstraction is the thinning away of detail from a problem domain,

leaving a more general representation. At the highest level of
abstraction, a software solution is provided in broad terms, using

the language of the problem domain. And at the lowest level, the

language is the programming code itself. In between there are many
levels. The software architect will abstract and model the system in

various ways in order to focus on the essential programme elements.

A cohesive module performs a single task and requires little

interaction with other modules in order to accomplish this. For
example, it is a common dictum that methods should only do one

thing i.e. return or alter a single value with no other side-effects.

Similarly, a cohesive class will represent a single concept, or type of
real-life object.

Coupling refers to the connectivity between modules, and should be
kept to a minimum if the software is to be understood. The

elimination of the notorious go to statement has done much to

reduce ‘spaghetti code’ and the complexity of a programming unit.
There is no such check on modular spaghetti networks however, and

software designers must guard against high coupling.

It is generally agreed that all modules should present a simple,

public interface. The interface defines what tasks the modules can
perform, but not how the modules may accomplish this task. These

details are private to the module; a client of the module need never

know them. Each module in a ‘good’ system is only linked to a few
others and every client is not able to know more about the module

than is contained in the interface. This is the important principle of

encapsulation.

A module with high cohesion and low coupling can be re-used,
either in later systems, or in other modules of the present system.

The object oriented paradigm supports re-usable modules as we will

later explain. High cohesion and low coupling also mean that
modules can be replaced without too much disruption to the system

as a whole. They are pluggable. Re-usable, replaceable pluggable

modules function rather like component parts in a mechanism. That
is why they are called software components.

Learning activity

Write, in your own words, a paragraph on what a good system should be like.

1.3 Building systems with objects

Read UUML, Chapter 2, What is an object?.

This reading relates programming with objects to the reusable,
replaceable modules which make good components and ultimately,

we hope, a good system.

5

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

The fundamental module of object oriented (OO) programming

languages is (unsurprisingly) the object. Here we summarise, from a
software engineering perspective, some properties of objects, and

introduce a small amount of the unified modelling language (UML).

Objects are programming modules that group related data items

together. A set of objects with a similar role in a system is grouped

into a class. Blocks of code which perform common operations on
this data are also grouped together and are maintained by the class.

Objects are supposed to be the software analogue, or representation,

of an actual object or of a concept. In this way, we hope to map the
tangible real world of things onto the logical, abstract world of

computer code.

The class is an object factory, responsible for making however many

objects the system requires. (An object can be referred to as an
instance of a class.) The state of an object is the value of all the

variables in that object and the behaviour of an object is the way

that an object responds to messages. In the OO world, a system is a
collection of objects which are sending messages to each other in

order to accomplish a certain task.

An example of an object message is:

resetTime(newTime: Time)

This message is written in UML notation. Here, newTime is an object
of type Time i.e. an instance of the Time class. Notice that the

message resetTime(newTime: Time) is language independent.

Suppose that myClock is an instance of a Clock class and we would
like myClock to accept and respond to a resetTime message. In

Java, we would ensure that a Clock object would accept this

message by implementing a method in Clock with the signature:

public void resetTime(Time newTime)

The class of an object also defines its interface. In the Clock

example, myClock is an object of class Clock. Clock’s public

interface might specify that each Clock object should provide
reset-time and report-time operations. A Clock object will also have

a private time attribute. Private attributes are only available to the
object itself: clients of Clock cannot access time directly. Instead,

they can only ask the time by sending the message report-time to a

Clock object. This is known as data-hiding. In contrast, a public
attribute or operation is accessible by any client. Hidden-data is

often accessed using specific accessor (getters and setters) methods.

Objects from the same class have the same interface. The public and
private interface to Clock might be:

-time : Time

+ reportTime() : String

+ resetTime(newTime: Time)

where the symbols + and - refer to public and private visibility.

Learning activity

1. What is an object’s interface? What is the difference between a public and a

private interface?

6

OO design

2. Why bother grouping similar objects together into a class?

3. Write, in pseudo-Java, a class outline for Clock based on its declared interface.

Comments on the activity

1. See section UUML, What is an object [subsection: Interfaces].

2. See the digression UUML, What is an object? [subsection: Digression: why have

classes?]. A basic answer to the problem of maintaining consistent copies of any

software artefact is to structure code so that no copies are necessary! For

example, all my Clock objects need to be reset. It’s far easier to maintain (i.e.

revise and re-use) a single reset method in the class myClock. A further and

more technical point is that a class can be thought of as a type, and the language

compiler can spot possible errors when type-checking.

3. The pseudo-Java code, shown below, is a bridge between the design and the

implementation phases of a software project.

class Clock

private Time time

public String reportTime()

return time.toString()

public void resetTime(Time newTime)

time = newTime

Read UUML, Chapter 2, How does this relate to the aims of the

previous chapter?.

The previous chapter proposed that reusable, replaceable,

component-like modules will lead to reduced development time and
cost, ease of maintenance and greater reliability. OO is expected to

deliver on these counts, but objects themselves do not make good

modules, because there can be many similar objects in a system, and
the requirement to ensure consistency between them would be a

very high price to pay. A house is made from many bricks but a
single Brick class provides the necessary generalisation.

Another benefit of OO is that it is natural to objectify the world, so
that an OO system can provide a better match between abstract

computer code and the problem domain of the customer. An object

model can help engineers in capturing requirements, following
changes in user requirements and allowing for more naturally

interacting systems.

OO, of course, is not the only possible approach, but it is one that

takes modularity, encapsulation and abstraction as fundamental.

1.4 OO design

Read UUML, Chapter 2, Inheritance.

Inheritance, polymorphism and dynamic binding are the three

features that make OO special.

7

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

Inheritance is an important concept in OO design and you should

make sure that you understand the explanations given in this
reading. Notice in particular how a subclass can inherit attributes

and operations from its superclass, a subclass can add extra

attributes and operations, and a subclass may override some
superclass methods. (Less usefully, a subclass may also shadow

superclass variables.)

Apart from the direct advantage of code re-use, inheritance implies

another defining feature of the OO paradigm. A subclass object can

be freely substituted for its superclass parent. This means that an
object can have any one of several types. The ability of an entity to

exist in different forms is called polymorphism.

Since methods may be overridden in sub-classes, what code should

be executed as the result of some message? For example, a
Lecturer class can be sub-classed by a DirectorOfStudies class

with the overridden method canDo(Duty duty). In the following

pseudo-code

for each o in lecturers

o.canDo(seminarOrganisation)

lecturers is a list of Lecturer objects, and includes a

DirectorOfStudies object, o is a specific object selected from this
list and

canDo(seminarOrganisation: Duty)

is an operation on Lecturer objects. Note also the dot notation

signifies message sending: o is the recipient of the message cando(

seminarOrganisation). When the program execution reaches the

DirectorOfStudies object, the overriden canDo method is invoked,
as we would expect. The runtime selection of the correct method

due to a specific message is known as dynamic binding.

Learning activity

Inheritance clearly favours code re-use, and it would therefore appear to be a desirable

feature of OO. Do you think that inheritance leads to greater or less encapsulation?

Comments on the activity

Item 14 of Effective Java by Joshua Bloch warns against inheritance across package

boundaries. A subclass depends on the implementation details of its superclass,

clearly in conflict with the principle of encapsulation. Composition is a better solution -

we shall return to this in a later chapter.

Read UUML, Chapter 2, Polymorphism and dynamic binding.

Clearly, polymorphism promotes code re-use. But polymorphism
also makes code more flexible. For example, the Java classes Vector

and ArrayList both implement the Java interface List. Remember

that an interface, in general, defines what tasks a module can do,
but not how it may do it. In Java, an interface type is a

programming implementation of this general notion: Vector and

8

Summary

ArrayList implement certain methods which are specified by the

List definition. Hence they share the same public interface.
Furthermore, an interface defines a type which all implementing

classes share. For example, wherever a Vector is instantiated

Vector subscribers = new Vector();

we can use a List object:

List subscribers = new Vector();

and a Vector instance method such as add(Object o) will still

work:

subscribers.add(newSubscriber);

This is more flexible because we can later switch implementations

List subscribers = new ArrayList()

and all the surrounding code will still work. Item 34 of Effective Java

explains this point in some more detail.

1.5 Exercises

1. Would individual objects make good modules?

2. Supporters of OO claim that a major benefit of this paradigm is
that it is inherently natural to look at the world in terms of

objects. Why should this be beneficial for software design?

3. Suppose that OO enables us to build a good system. How much

of this is due to the intrinsic nature of OO techniques?

Answers

1. No. See UUML, Chapter 2, How does this relate to the aims of the

previous chapter? [first three paragraphs].

2. The short answer is that the system can better match the users’

model of the world. But you should try to understand why
software architects consider this to be desirable.

3. If OO succeeds, it is because this paradigm takes modularity,

encapsulation and abstraction as fundamental.

1.6 Summary

After studying this chapter you should be able to:

state what a high quality software system should be like and
comment on to what extent we have such systems

state the basic problem faced by software developers

list and explain the fundamental design concepts of software

engineering (modularity, abstraction, high cohesion, low

coupling, simple public interfaces, encapsulation, components)

explain what software objects are, and how they communicate

use UML to specify a class interface

9

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

translate object messages into Java methods, and write a class

skeleton based on a declared interface

list and explain the three special features of OO (inheritance,
polymorphism, dynamic binding)

10

Chapter 2

Development Process and Modelling

Essential reading

UML Distilled, Chapters 1-2

Using UML, Chapter 4

Additional reading

R. Pressman, Software Engineering, a Practitioner’s Approach, Chapter 2

The first chapter argued by analogy that software, like any other

engineering project, proceeds by phases of development. The phases
fit together into a process. In this chapter we consider the

development process in more detail. We also look again at the

fundamental problem of software systems - the intangibility and
complexity of computer code. Good design, we have discovered, is

modular. But how do we arrive at these modules? We can’t play
with a lump of plasticine or sketch pictures in order to brainstorm

new ideas. However, the system must be modelled in some way. We

introduce software modelling languages and the chapter finishes by
demonstrating how the most prevalent modelling language, UML,

integrates back into the developmental process.

2.1 Iterative and waterfall processes

Read UMLD, Chapter 2, Iterative and Waterfall Process.

The iterative and waterfall methods are the two major categories of

software development processes. Both methods agree that the

process must be subdivided into phases. The waterfall emphasises
discrete activities that must be completed sequentially. And just like

a real waterfall, back flow is impossible (or at least exceptional).
Iterative techniques break the project down into chunks of

functionality, called iterations. Each iteration is a complete life-cycle:

analysis, design, implementation and testing. Each iteration outputs
a system of production quality, even if it is not actually released at

this stage. Time boxing forces an iteration to be of fixed duration,

even at the expense of slipping functionality. Generally speaking it is
better to slip a function rather than a date because the team can

then learn just what the most important functional requirements
actually are.

11

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

Learning activity

Which process is recommended by the OO community? Why is this?

Comments on the activity

See UMLD, Chapter 2, Iterative and Waterfall Processes [last half of this section].

(Martin Fowler, the author of UMLD recommends “You should use iterative

development only on those projects that you wish to succeed!”)

2.2 Design and modelling

Read UUML, Chapter 4, Defining terms [omit: Process and Quality].

As we have mentioned before, a model is an abstract representation

of a specification, a design or a system. The model itself is usually
represented visually, as a diagram, but can be textual. The model is

precise according to the implicit point of view. Room plans, wiring

diagrams, elevations and other architectural plans strip away
unnecessary detail in order to focus more clearly on what they are

representing. The modelling language has syntax and semantics,

just as a natural (spoken) language does. The unified modelling
language, UML, is quickly becoming the lingua franca of software

architects. One reason for this is that the language is very flexible
and is not tied to a particular process.

Learning activity

What are the attributes of an ideal modelling language?

Comments on the activity

A modelling language should be expressive, easy to use, unambiguous, supported by

tools and widely used - see the list of points in UUML, Chapter 4, Defining terms

[subsection: Why a unified modelling language?].

Read UUML, Chapter 4, system, design, model, diagram.

The developmental process will produce (we hope) a collection of

programmes which work in an appropriate environment to fulfil the

users’ needs. The architecture of this system abstracts away many
details and embodies just how the system should be built.

The plans for a house do not include each brick, each floorboard and
every electrical socket, but they do show the relative positions of the

walls, floors and ceilings, the electrical wiring, the landscaping of

the garden...There are many plans, each one is incomplete in itself,
but taken together they describe the project at just the right level of

detail for the builders, electricians, joiners and landscape gardeners.

12

A unified modelling language: UML

Plans are roughly analogous to models in software engineering.

Many models are needed even with a simple design; it is impossible
that a single diagram can capture every design aspect. There are

three groupings of software models, a use case model, a static or

structural model and a dynamic or behavioural model. A building
plan may be drawn from different perspectives. Similarly, four

software “views” have been suggested: logical, process,

developmental and physical. A design requires several models, and
each model might require several diagrams from various views, and

all of these must be consistent.

We are now ready to begin our study of UML.

2.3 A unified modelling language: UML

Read UMLD, Chapter 1, What Is the UML?.

The fundamental imperative behind all graphical techniques is that
programme code is not at a high enough abstraction to promote

meaningful discussions about design. UML is a family of graphical
notations, unified by a single meta-model. These notations help in

describing and designing OO software. UML is an open standard,

controlled by the Object Management Group, and is a unification of
many pre-existing OO graphical techniques.

Read UMLD, Chapter 1, Ways of using UML [omit Model Driven

Architecture and Executable UML].

This reading suggests that UML can be used in different ways. This
is because people use older graphical modelling languages in

different ways, and that legacy has passed to the newer, unified
language. The three uses or modes outlined are sketching,

blueprinting and programming. One criticism of the blueprinting is

that it takes too much time to prepare and that textual languages
are already very effective for most programming tasks. In

programming mode, UML becomes the source code, and this mode

demands very sophisticated tools.

Learning activity

Write a few sentences on each of the three modes of use of UML.

As well as the three modes of use, there are two perspectives, the

software perspective and the conceptual perspective. Some tools
will turn a UML diagram into source code. This is very much a

software perspective. Alternatively, in the conceptual perspective,

the diagrams are language independent representations of
structures and relationships.

Read UMLD, Chapter 1, UML diagrams.

Tables 1.1 and 1.2 of UMLD show classifications of the thirteen

diagram types in UML 2.0. You do not need to learn these tables!
They will be useful, though, for you to refer back to as we introduce

various diagrams in part II of this guide. The UML authors do not in

13

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

fact see the diagrams as the central part of UML and as a result the

diagram types are not rigid and there is much flexibility in their use.

Read UMLD, Chapter 1, What is legal UML?

Most people regard that the UML rules are descriptive rather than

prescriptive. This means that we infer language rules by looking at

how other people have used them, just as we have all done in
learning our own first spoken language. The UML does have a

standard, although even this is imprecise because UML is so

complex. Information may be suppressed in UML, so that nothing
can be inferred from the absence of any particular detail in a

diagram. But most important, it is better to have good design rather
than strictly legal and precise UML.

Read UMLD, Chapter 1, The meaning of UML.

There is no formal definition of how UML maps to any particular

programming language. The meaning of UML (within the sketch
mode) is to provide a rough idea of what the code will look like. We

can trust the bricklayer to actually make the wall, but a plan tells

her where to put it.

Read UMLD, Chapter 1, Where to start with UML.

Luckily, Fowler recommends that we don’t need to use all thirteen

UML diagrams! A team will work well with just a subset of UML.

The most common and useful diagrams are class and sequence
diagrams. Chapter 9 makes further suggestions.

2.4 Fitting UML into a process

Read UMLD, Chapter 1, Fitting the UML into a process [omit

Documentation].

This section of UMLD suggests which types of diagrams are useful in

the analysis and design phases, and also for documentation. The

section also discusses how to use UML in sketch or blueprint mode.

Learning activity

Contrast the different uses of UML in the waterfall and the iterative process.

Comments on the activity

In the waterfall approach to development, the diagrams are prepared as part of each

phase and are included in the end of phase documents. UML is used for blueprinting,

and the diagrams are definitive.

In the iterative process, the UML diagrams may be sketches or blueprints, but they may

be modified at each iteration. The analysis diagrams will be drawn in the iteration

preceding the iteration that adds functionality to the software. Blueprint design can be

made early in the iterations for targeted, principal functionality, and any iteration can

make changes to existing models rather than building a new model. The model itself is

not reworked.

14

Exercises

2.5 Exercises

1. What are the similarities and differences between the waterfall
and iterative development processes?

2. How can you tell if a process is truly iterative?

3. A project manager is overheard saying “This iteration’s buggy,

but we’ll clean it up at the end”. What software development

process is being used on this project? Explain your answer.

4. (a) What is code rework?

(b) In many domains, such as manufacturing, rework is seen as

being wasteful. Is this true in the software domain?

(c) Which technical practices can make rework more efficient?

5. (a) Which UML techniques are useful in the requirements

analysis phase?

(b) What is the main objective during this phase?

(c) How does this impact on the UML techniques?

6. Which diagrams are useful during the design phase, and how

are they used?

Answers

1. Two paragraphs summarising the material in UMLD, Chapter 2,

Iterative and Waterfall Processes [first page] would be a good

answer. Diagrams similar to R. Pressman, Software Engineering:

A Practitioner’s Approach, Figures 2.4 and 2.7 will gain bonus

marks.

2. Each iteration must produce tested, integrated code that is of (or

close to) production quality. The test is that any iteration that
has not been scheduled for release, could in fact be released.

3. A waterfall process, because the manager admits the current

iteration is not of production quality, contrary to the definitive

test for a genuine iterative process (see above answer).

4. (a) Rework means that existing code is revised, possibly even
deleted.

(b) Far from being wasteful, code rework saves time (and hence
money) in the long run because it is rarely a good idea to

patch badly designed code.

(c) Automated regression tests, re-factoring and continuous

integration.

5. (a) See UMLD, Chapter 2, Fitting the UML into a Process

[subsection: Requirements Analysis].

(b) Use cases, class, activity and sequence diagrams are all

useful in this phase.

(c) The overriding aim is communication between architects

and users (just as in house building projects), so UML rules

may have to be broken because clients - who are the
domain experts - will not necessarily be at all familiar with

software engineering.

15

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

6. See UMLD, Chapter 2, Fitting the UML into a Process [second

page]. Class diagrams - these show the classes and how they
interrelate. Sequence diagrams model scenarios (scenarios will

be explained in a later chapter, but basically they are short

stories illustrating how a user may interact with the system).
Package diagrams - these show the large-scale organisation of

the software. State diagrams are useful for any class with a

complicated life history. Deployment diagrams show the
physical layout of the software.

2.6 Summary

After studying this chapter you should be able to:

list the four phases of software development (analysis, design,

implementation, testing)

explain why developmental phases must be managed in a
process

describe and distinguish the waterfall, iterative and agile

development processes

explain the importance of modelling and finding a good
modelling language

list the features of a good modelling language (expressive, easy

to use, unambiguous, supported by tools, widely used)

state the three groups of software models (use case, static or

structural and behavioural or dynamic)

state and explain the three modes of use of UML (sketch,

blueprinting and programming)

explain the difference between a software perspective and a

conceptual perspective

recommend types of diagrams for the analysis and design phases

16

Part II

UML

17

Chapter 3

Use Cases

Essential reading

UML Distilled Chapter 9

You have been introduced to the idea of a modelling language. Part
II of this guide is largely devoted to the unified modelling language

(UML). However, we begin with a technique that UML does not
standardise, and whose value derives from text rather than

diagrams.

3.1 Requirements capture

The hardest single part of building a software system is deciding

precisely what to build. No other single part of the conceptual work is

as difficult as establishing the detailed technical requirements,

including all the interfaces to people, to machines, and to other

software systems. No other part of the work so cripples the resulting

system if done wrong. No other part is more difficult to rectify later 1. 1Frederick Brooks in No Silver Bullet:

Essence and accidents of software

engineering IEEE Computer, pp.

10-19, 1987
The essential phases of software development are: requirements

analysis, design, implementation, testing and maintenance. These
phases are common to all software development processes, but each

process differs in the duration, completeness and sequence of these
steps. But all processes agree on the very first step, namely deciding

what needs to be built.

Learning activity

Why do you think deciding precisely what needs to be built is so difficult? What are the

ramifications for not making these decisions?

Comments on the activity

The important thing is not to decide what to build, but to decide what precisely to build.

This is hard because

the client might only have a vague and unrealistic idea of what they want

the software engineers are not experts in the application domain

of shifting requirements as the project develops

19

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

3.2 The basic technique

The aim of requirements analysis is a description of how the system

should behave in certain situations, i.e. a set of functional

requirements. Use cases are a technique for capturing these
requirements. The use cases describe typical interactions between

the users and the system. This narrative is built from scenarios. A
scenario is one thing that might happen, and several scenarios, all

tied together by a specific user goal, constitute a use case.

The users of the system are called actors, a mistranslation of the

Swedish word for role. An actor is a role that a user has when

engaging with the system. Actors need not even be people: an
external computer system could also be an actor.

Read UMLD, Chapter 9, Content of a Use Case.

Figure 9.1 of UMLD shows a possible format of a use case. UML

itself does not specify a standard. Notice that the use case is textual
rather than diagrammatic. Each statement or step is an element of

the interaction between the actor and the system, showing the
intention, but not the mechanism. Each step may suggest alternative

situations, and these are logged as extensions to the use case.

Sometimes a sequence of steps can occur in other use cases as well.
These steps can be factored out and replaced with a single more

complex step. Pre-conditions, guarantees and triggers can also be

added to use cases, but the aim should always be for simplicity.

Learning activity

1. What is a scenario, and why is it used?

2. What is the relationship between scenarios and use cases?

Comments on the activity

1. A scenario is a sequence of steps describing an interaction between the user and

the system. It is written as a paragraph of normal text. They are used for

requirements capture. Since they are textual, they are easily understood by the

domain expert. A number of scenarios will eventually comprise a single use case.

The use case is the principal UML expression of system requirements.

2. Several scenarios may share a single goal, but in some of them the user does not

succeed in achieving this goal. These scenarios, linked by a common user goal,

become a single use case. The main success scenario becomes the main body

of the use case, the other scenarios enter the use case as extensions.

Read UMLD, Chapter 9, Use Case Diagrams.

As you can see in Figure 9.2, UML does specify a diagram for use
cases, but really such things serve best as a table of contents to the

textual descriptions. The diagram shows the actors, the use cases,
and any inclusions.

Read UMLD, Chapter 9, Levels of Use Cases.

20

Summary

The reading distinguishes business use cases from system use cases.

The system use case concerns a (relatively short) interaction
between an actor and the system. These are ‘sea-level’ use cases.

Interactions that have complex ramifications for the entire business

are at a higher (kite) level. And use cases that only exist because
they are included in other level 1 cases are at fish level.

3.3 When to use use cases

Read UMLD, Chapter 9, When to Use Use Cases.

Use cases help us to grasp the basic functional requirements of the
system and should be generated early in the project. Later,

immediately prior to implementation, more detailed versions of

these cases can be derived. The use case diagram is of little value
compared to the textual specification. As with all good UML, always

strive for simplicity and clarity.

3.4 Exercises

1. Your development team has been asked to develop a Personal
Organiser. The organiser should allow users to enter

appointments in a calendar, receive alarms and maintain an

address book of contacts. You might be able to think of other
desirable functions. To begin this project, write some scenarios.

Form a few simple use cases from these scenarios and draw a

use case diagram. Now, in a mini-iteration, study your use cases
and include any pre-conditions, guarantees and triggers that

might seem appropriate.

2. Your development team has been contacted by a client who

wishes to produce a Space Game. This game will be based on

classic video games such as Space Invaders, Galaxians and
Asteroids as a single application. See

http://www.spaceinvaders.de/ for information on Space

Invaders and links to other retro arcade games.

To start, develop a set of scenarios and use cases for Space
Invaders. If you have time, develop some use cases for at least

one more game. Are there common features? Can you now

develop some use cases for a generic Space Game?

3.5 Summary

After studying this chapter you should be able to:

state what a scenario and a use case are

explain the relationship between a use case and a scenario

compose scenarios and use cases for software projects

draw a use case diagram

understand the different levels of use cases

add common information such as pre-conditions, guarantees,

triggers to a use case

21

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

be able to factor out common steps from use cases and

represent this on a use case diagram

know when (at what stage of the software development
process) to compose and amend use cases.

22

Chapter 4

Class Diagrams: The basic

technique

Essential reading

UML Distilled Chapter 3

Using UML Chapter 5

Read UMLD, Chapter 3, Introduction.

The class diagram is a very widely used modelling technique. A class
diagram describes the types of objects in the system and the static

relationships between them. This chapter shows you the basic

techniques of class modelling. We begin by asking: how do we know
which classes a system might have in the first place?

4.1 Class identification

Read UUML, Chapter 5, Identifying objects and classes.

The objectives for any software project are to minimise expense and
development time whilst maximizing system maintainability and

adaptability. These objectives are often in conflict, but they may be

met if the class model provides all required system behaviours, and
if the classes represent enduring domain objects, irrespective of the

particular functionality required during development. A Book class
in a library system represents just such a domain object.

Any technique that leads to a good class model is satisfactory. It is
unlikely that you will find all the correct classes at the first iteration.

The most important domain objects (such as books, catalogue,

library member) should be easy to spot, because these belong to the
problem. More elusive, though, are other classes that will have to be

introduced in order to help solve the problem. A common technique
is noun identification. Start with the requirements specification and

make a candidate list of all nouns and noun phrases. Then eliminate

inappropriate classes, and rename, if necessary the remaining
classes. UUML lists some reasons why a candidate class might be

eliminated and you should study this list carefully.

Ultimately, what you will be left with is a list of tangible or

real-world things (book, journal, catalogue) and less tangible things

such as roles (librarian, library-member). Ideally a software object,
as generated by a class, represents a real-world object. This

correspondence between the world and its representation as code

23

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

helps us to conceptualise the system and deal with complexity. The

system itself is the sum total of all the objects, and of all their
interactions. OO design seeks to avoid the monolithic top-down

approach where a single module knows and does everything and

you should be careful that your own architecture does not fall into
this trap, for example by using a single object to represent the core

of the system.

Learning activity

1. What is so bad about top-down design?

2. Suppose you are refining a candidate class list. Under what criteria would you

reject any candidates?

Comments on the activity

1. Top-down systems with a single monolithic class are difficult to maintain and have

built-in assumptions about how the system will be used.

2. An inappropriate class will have one or more of the following undesirable

attributes:

redundancy

vagueness

an event or an operation

too abstract, not representing an object in the problem domain

outside the scope of the system

an attribute with no interesting behaviour.

4.2 Properties

Read UMLD, Chapter 3, Properties.

Properties are the structural features of a class, and appear on the

class diagram as an attribute or an association. The attribute appears
inside the class box, and only the name of the attribute is necessary.

At the first attempt, you might wish to restrict attribute descriptions

in your class diagram to name:type, e.g. price:Money. This means
that price is an object of class Money.(In fact there are other

possibilities, because an object’s type is quite a complicated thing.)

An association is a solid line between classes, directed from the

source to the target class. In this case, the name of the attribute
appears at the target end of the line. In Figure 3.3, dateReceived,

lineItems and isPrepaid are properties of Order, represented in

the diagram by associations. Following the advice in this reading,
you may wish to reserve associations and class boxes for the most

significant classes - it all depends on what you want to emphasise by

any particular diagram.

Learning activity

Study the associations in Figure 3.3.

24

Properties as code

1. How many orders may be made on any day?

2. Can we have an order line without an order?

Comments on the activity

1. Any number, including none at all (consider the association between the source

Date and the target Order).

2. No. The OrderLine (source) - Order (target) association has multiplicity 1.

Any number of order lines are associated with one, and only one, order.

4.3 Properties as code

Read UMLD, Chapter 3, Programming Interpretation of Properties.

A simple way of implementing properties in code is with private
data fields. Clients of the class can then retrieve or alter this data

with public getter and setter methods. However, the property can
also be computed rather than stored. In this case a getter method

could calculate the data (e.g. multiply the number of items by their

unit price). Multi-valued attributes are coded with a collection, and
in this case you will certainly choose to update an item with a setter

method. An alternative, and dangerous, implementation might

return the entire collection to the caller.

The class skeleton for Order shows how the lineItems property can

be implemented by a HashSet, which is a particular sort of
unordered collection, or set. In contrast, this same property is

marked as ordered in Figure 3.3, and it would be implemented by a
List or an Array. In practice, for consistency, the class diagram and

class skeletons should really agree.

Note that the getter/setter methods will retrieve/alter a single item

from lineItems, rather than pass the whole set to the requesting

client object. The client would not need to know that line items are
stored in a list, or an array; all the client wishes to do is inspect an

item. This is the essence of encapsulation.

Learning activity

Why should you be afraid of classes that are nothing but a collection of fields and their

accessors?

Comments on the activity

OO design is concerned with objects that have rich behaviour. Objects are not just

parcels of data, but also have operations and behaviour. A heavy use of an object’s

accessors indicates that some behaviour should be moved to this object.

25

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

4.4 Adding more information to the class model

Read UMLD, Chapter 3, Multiplicity.

The multiplicity of a property is the number of objects that fill this

property. Make sure that you understand the meaning of the

notation [1], [0..1], [0..2] etc. and [*].

Read UMLD, Chapter 3, Bidirectional Associations.

The bidirectional association, signified by navigability arrows at

either end, refers to a pair of properties that are linked together, as

in the Person - Car association. Navigating from Car to Person and
back again returns us to the same car. Implementing bidirectionally

is difficult due to synchronisation of the data.

Learning activity

1. Could you mark a Person - Address association as bidirectional?

2. Write down the property pair that represents the actual property ‘lives at’ for

Person - Address. Draw two class boxes, one for each for Person and

Address and link these boxes with an association. Mark multiplicities on the

ends of the association. Add further properties to the diagram.

Comments on the activity

1. Yes. An object can ask an Address instance who lives there. Address returns

a number of Person objects. Take one of these Persons and ask where they

live. The returned object will be the original Address.

2. The Address class has properties dweller:Person[*] and the Person

class has a property home:Address[0..1]. (We assume that no-one has

more than one address.)A d d r e s sn u m b e r : I n t e g e rs t r e e t : S t r i n gc i t y : S t r i n ga d d O c c u p a n t (P e r s o n)r e m o v e O c c u p a n t (P e r s o n) P e r s o nn a m e : S t r i n ga d d A d d r e s s (A d d r e s s)0 . . 1 *
Read UMLD, Chapter 3, Operations.

Operations are the actions of a class, and correspond to methods in

Java. There is a subtle distinction between the two: an operation is

a procedure which might be carried out by any one of several
methods in an inheritance tree. Notice that operations appear in the

lower third of the class boxes in Figure 3.1.

26

Summary

UML distinguishes between query and command operations.

Technically, a query does not change the observable state of an
object. A useful programming tip is to separate commands from

queries by ensuring that commands do not return any value to the

caller.

Read UMLD, Chapter 3, Generalization.

Generalisation means that two objects of different types may be

freely substituted for each other. The obvious OO mechanism is

inheritance. Subclasses of a parent inherit all the features of that
parent, and may override any method of the parent. In general, a

subtype can replace a super-type in any code block and the
programme will still function (although the output may be different,

of course). This is a manifestation of the OO principle known as

polymorphism. A subclass is therefore a subtype. Different
languages might have additional mechanisms for sub-typing, for

example interfaces in Java. Interfaces are studied in Chapter 5 of

UMLD.

4.5 When to use class diagrams

Read UMLD, Chapter 3, When to Use Class Diagrams.

Class diagrams are the single most important modelling idea in UML
and you will use them all the time. However they can be very

detailed. Too much detail can detract from the underlying purpose

of the diagram. It is best therefore to start simply and add extra
information only when necessary. Don’t draw models for everything.

A few class diagrams should cover the breadth of the system. Each
class diagram should be used in conjunction with a behavioural

diagram so that the dynamic relationship between objects can be

grasped.

4.6 Exercises

1. Examine the scenarios and use-cases that you wrote for the

Personal Organiser (Section 3.4). Construct a candidate class

list. Refine this list by elimination and renaming until you are
confident that you have discovered the base classes. Now

construct a class diagram for one or more of the use cases that
you have previously identified (see Section 3.4).

2. Draw up a class list for Space Game. Refine this list and

construct a class diagram for one or more of the use cases that

you have already identified in Section 3.4.

4.7 Summary

After studying this chapter you should be able to:

draw up a candidate class list from a requirements document

state what characteristics a candidate class should have

27

CIS226 Software Engineering, Algorithm Design and Analysis Volume I

recognise class boxes, attributes and associations on a class

diagram

be able to use the full textual description of an attribute

understand how an association on a class diagram relates to

message-passing between objects

draw simple class diagrams

write class skeletons for simple class diagrams

add multiplicities to associations

use, where appropriate, a bi-directional association

distinguish command operations from query operations

state the meaning of subtype, super-type and inheritance.

28

